forked from Jasonkks/PTTR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_tracking.py
252 lines (213 loc) · 11.1 KB
/
test_tracking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import time
import os
import logging
import argparse
import random
from pyquaternion import Quaternion
import numpy as np
from tqdm import tqdm
import torch
import kitty_utils as utils
import copy
from datetime import datetime
from metrics import AverageMeter, Success, Precision
from metrics import estimateOverlap, estimateAccuracy, estimateIOU3d
from data_classes import PointCloud
from Dataset import SiameseTest
import torch.nn.functional as F
from torch.autograd import Variable
from pointnet2.models import get_model
def test(loader, model, epoch=-1,
shape_aggregation="",
reference_BB="",
max_iter=-1,
IoU_Space=3):
"""
"""
batch_time = AverageMeter()
data_time = AverageMeter()
Success_main = Success()
Precision_main = Precision()
Success_batch = Success()
Precision_batch = Precision()
# switch to evaluate mode
model.eval()
end = time.time()
dataset = loader.dataset
batch_num = 0
with tqdm(enumerate(loader), total=len(loader.dataset.list_of_anno)) as t:
for batch in loader:
batch_num = batch_num+1
# measure data loading time
data_time.update((time.time() - end))
for tracklet_idx, (PCs, BBs, list_of_anno) in enumerate(batch): # tracklet
results_BBs = []
tracklet_idx = tracklet_idx + batch_num * len(batch)
for i, _ in enumerate(PCs):
this_anno = list_of_anno[i]
this_BB = BBs[i]
this_PC = PCs[i]
gt_boxs = []
result_boxs = []
# INITIAL FRAME
if i == 0:
box = BBs[i]
results_BBs.append(box)
model_PC = utils.getModel([this_PC], [this_BB],
offset=dataset.offset_BB,
scale=dataset.scale_BB)
else:
previous_BB = BBs[i - 1]
# DEFINE REFERENCE BB
if ("previous_result".upper() in reference_BB.upper()):
ref_BB = results_BBs[-1]
elif ("previous_gt".upper() in reference_BB.upper()):
ref_BB = previous_BB
# ref_BB = utils.getOffsetBB(this_BB,np.array([-1,1,1]))
elif ("current_gt".upper() in reference_BB.upper()):
ref_BB = this_BB
candidate_PC, candidate_label, candidate_reg, new_ref_box, new_this_box = \
utils.cropAndCenterPC_label_test(this_PC,
ref_BB, this_BB,
offset=dataset.offset_BB,
scale=dataset.scale_BB)
candidate_PCs, candidate_labels, candidate_reg = utils.regularizePCwithlabel(
candidate_PC, candidate_label,candidate_reg,
dataset.input_size, istrain=False, keep_first_half=False)
candidate_PCs_torch = candidate_PCs.unsqueeze(0).cuda()
# AGGREGATION: IO vs ONLY0 vs ONLYI vs ALL
if ("firstandprevious".upper() in shape_aggregation.upper()):
model_PC = utils.getModel(
[PCs[0], PCs[i-1]],
[results_BBs[0], results_BBs[i-1]],
offset=dataset.offset_BB,
scale=dataset.scale_BB)
elif ("first".upper() in shape_aggregation.upper()):
model_PC = utils.getModel(
[PCs[0]], [results_BBs[0]],
offset=dataset.offset_BB,
scale=dataset.scale_BB)
elif ("previous".upper() in shape_aggregation.upper()):
model_PC = utils.getModel(
[PCs[i-1]], [results_BBs[i-1]],
offset=dataset.offset_BB,
scale=dataset.scale_BB)
elif ("all".upper() in shape_aggregation.upper()):
model_PC = utils.getModel(
PCs[:i], results_BBs,
offset=dataset.offset_BB,
scale=dataset.scale_BB)
else:
model_PC = utils.getModel(
PCs[:i], results_BBs,
offset=dataset.offset_BB,
scale=dataset.scale_BB)
model_PC_torch = utils.regularizePC(
model_PC, dataset.input_size,
istrain=False, keep_first_half=True).unsqueeze(0)
model_PC_torch = Variable(
model_PC_torch, requires_grad=False).cuda()
candidate_PCs_torch = Variable(
candidate_PCs_torch, requires_grad=False).cuda()
input_dict = {
'template' : model_PC_torch,
'search' : candidate_PCs_torch
}
output_dict = model(input_dict)
estimation_box = output_dict['estimation_box']
estimation_boxs_cpu = estimation_box.squeeze(0).detach().cpu().numpy()
box_idx = estimation_boxs_cpu[:, 4].argmax()
estimation_box_cpu = estimation_boxs_cpu[box_idx, 0:4]
box = utils.getOffsetBB(ref_BB, estimation_box_cpu, training=False)
results_BBs.append(box)
# estimate overlap/accuracy for current sample
this_overlap = estimateOverlap(BBs[i], results_BBs[-1], dim=IoU_Space)
this_accuracy = estimateAccuracy(BBs[i], results_BBs[-1], dim=IoU_Space)
Success_main.add_overlap(this_overlap)
Precision_main.add_accuracy(this_accuracy)
Success_batch.add_overlap(this_overlap)
Precision_batch.add_accuracy(this_accuracy)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
t.update(1)
if Success_main.count >= max_iter and max_iter >= 0:
return Success_main.average, Precision_main.average
t.set_description('Test {}: '.format(epoch)+
'Time {:.3f}s '.format(batch_time.avg)+
'(it:{:.3f}s) '.format(batch_time.val)+
'Data:{:.3f}s '.format(data_time.avg)+
'(it:{:.3f}s), '.format(data_time.val)+
'Succ/Prec:'+
'{:.1f}/'.format(Success_main.average)+
'{:.1f}'.format(Precision_main.average))
logging.info('batch {}'.format(batch_num)+'Succ/Prec:'+
'{:.1f}/'.format(Success_batch.average)+
'{:.1f}'.format(Precision_batch.average))
Success_batch.reset()
Precision_batch.reset()
return Success_main.average, Precision_main.average
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--ngpu', type=int, default=2, help='# GPUs')
parser.add_argument('--save_root_dir', type=str, default='./model/car_model/', help='output folder')
parser.add_argument('--data_dir', type=str, default = './data/kitti', help='dataset path')
parser.add_argument('--model', type=str, default = 'netR_59.pth', help='model name for training resume')
parser.add_argument('--category_name', type=str, default = 'Car', help='Object to Track (Car/Pedetrian/Van/Cyclist)')
parser.add_argument('--shape_aggregation',required=False,type=str,default="previous",help='Aggregation of shapes (first/previous/firstandprevious/all)')
parser.add_argument('--reference_BB',required=False,type=str,default="previous_result",help='previous_result/previous_gt/current_gt')
parser.add_argument('--model_fusion',required=False,type=str,default="pointcloud",help='early or late fusion (pointcloud/latent/space)')
parser.add_argument('--IoU_Space',required=False,type=int,default=3,help='IoUBox vs IoUBEV (2 vs 3)')
parser.add_argument('--input_size', type=int, default=1024)
parser.add_argument('--scale', type=float, default=1.0)
parser.add_argument('--offset', type=float, default=0.1)
args = parser.parse_args()
print (args)
logging.basicConfig(format='%(asctime)s %(message)s', datefmt='%Y/%m/%d %H:%M:%S', \
filename=os.path.join(args.save_root_dir, datetime.now().strftime('%Y-%m-%d %H-%M-%S.log')), level=logging.INFO)
logging.info('======================================================')
args.manualSeed = 1
random.seed(args.manualSeed)
torch.manual_seed(args.manualSeed)
netR = get_model('T', # name=args.type,
input_channels=0,
use_xyz=True,
input_size=args.input_size)
netR = torch.nn.DataParallel(netR)
if args.model != '':
netR.load_state_dict(torch.load(os.path.join(args.save_root_dir, args.model)), strict=False)
netR.cuda()
torch.cuda.synchronize()
# Car/Pedestrian/Van/Cyclist
dataset_Test = SiameseTest(
input_size=args.input_size,
path=args.data_dir,
split='Test',
category_name=args.category_name,
offset_BB=args.offset,
scale_BB=args.scale)
test_loader = torch.utils.data.DataLoader(
dataset_Test,
collate_fn=lambda x: x,
batch_size=1,
shuffle=False,
num_workers=0,
pin_memory=True)
Success_run = AverageMeter()
Precision_run = AverageMeter()
if dataset_Test.isTiny():
max_epoch = 2
else:
max_epoch = 1
for epoch in range(max_epoch):
Succ, Prec = test(
test_loader,
netR,
epoch=epoch + 1,
shape_aggregation=args.shape_aggregation,
reference_BB=args.reference_BB,
IoU_Space=args.IoU_Space)
Success_run.update(Succ)
Precision_run.update(Prec)
logging.info("mean Succ/Prec {}/{}".format(Success_run.avg, Precision_run.avg))
print("mean Succ/Prec {}/{}".format(Success_run.avg, Precision_run.avg))