-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDSvisualizer.py
280 lines (238 loc) · 11.5 KB
/
DSvisualizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from matplotlib.widgets import Slider, Button
from matplotlib.backend_bases import MouseButton
from scipy.integrate import DOP853
from scipy.fft import fft, fftfreq
class DSvisualizer:
def __init__(self, ode, sampling, pickSample, nTracks, pmapWrap, trajWrap, wrap3d, fftwrap, time, par, labels, poincInd = 0, maxstep=1., devtol=1e-5, lyaptol=1e+1, vectorized=False, equal=True):
self.ode = ode
self.sampling = sampling
self.pickSample = pickSample
self.nTracks = nTracks
self.tracks = []
self.points = {}
self.pmapWrap = pmapWrap
self.trajWrap = trajWrap
self.wrap3d = wrap3d
self.fftwrap = fftwrap
self.poincInd = poincInd
self.maxstep = maxstep
self.devtol = devtol
self.lyaptol = lyaptol
self.labels = labels
self.par = par
self.vector = vectorized
keys = list(self.par.keys())
N = len(keys)
a = 5.
b = 0.1
c = 0.07
self.L = 2*b+2*c+b+a+5*b+c+(c+b)*(N+1)+b
self.bottomL = (5*b+c+(c+b)*(N+1)+b)/self.L
self.topL = (a+5*b+c+(c+b)*(N+1)+b)/self.L
self.fig, self.ax = plt.subplots()
self.fig.set_size_inches((7, self.L))
self.fig.subplots_adjust(left=0.15, right=0.92, top=self.topL, bottom=self.bottomL)
axcolor = 'lightgoldenrodyellow'
self.ax.margins(x=0)
axtime = plt.axes([0.15, (b+a+5*b+c+(c+b)*(N+1)+b)/self.L, 0.7, c/self.L], facecolor=axcolor)
self.time_slider = Slider( ax=axtime, label='Time', valmin=time[1], valmax=time[2], valinit=time[0])
self.time_slider.on_changed(self.__update)
# sliders
self.sliders = []
for i in range(N):
axtemp = plt.axes([0.15, (2*b+(c+b)*(N-1-i))/self.L, 0.65, c/self.L], facecolor=axcolor)
self.sliders.append( Slider( ax=axtemp, label=keys[i], valmin=self.par[keys[i]][1][0], valmax=self.par[keys[i]][1][1], valinit=self.par[keys[i]][0]) )
self.sliders[-1].on_changed(self.__update)
# buttons
resetax = plt.axes([0.25, (2*b+N*(c+b))/self.L, 0.12, 2*c/self.L])
buttonr = Button(resetax, 'Reset', color=axcolor, hovercolor='0.975')
buttonr.on_clicked(self.__reset)
clearax = plt.axes([0.45, (2*b+N*(c+b))/self.L, 0.12, 2*c/self.L])
buttonc = Button(clearax, 'Clear', color=axcolor, hovercolor='0.975')
buttonc.on_clicked(self.__clear)
autoax = plt.axes([0.65, (2*b+N*(c+b))/self.L, 0.12, 2*c/self.L])
buttona = Button(autoax, 'AutoView', color=axcolor, hovercolor='0.975')
buttona.on_clicked(self.__auto)
self.fig.canvas.mpl_connect('button_press_event', self.__onClick)
self.fig.canvas.mpl_connect('pick_event', self.__onPick)
# Initial plot
self.colors = cm.gist_rainbow(np.linspace(0, 1, int(self.nTracks)))
y0_ar = self.sampling(self.nTracks, self.__slidersVal())
for i in range(int(self.nTracks)):
pmap = np.transpose(self.__getPoincare(y0_ar[i]) )
try: self.tracks.append( self.ax.scatter(pmap[0], pmap[1], s=0.5, color=self.colors[i]) )
except Exception as exc: self.tracks.append( self.ax.scatter([], [], s=0.5, color=self.colors[i]) )
self.ax.set_xlabel(self.labels["poincare"][0])
self.ax.set_ylabel(self.labels["poincare"][1])
#self.ax.set_aspect("equal")
print(self.__slidersVal)
# Trajectory, 3D, FFT, Maximal Lyapunov
self.fig1 = plt.figure()
self.fig1.set_size_inches((14, 3))
self.fig1.subplots_adjust(left=0.07, right=0.98, top=0.93, bottom=0.15, wspace=0.3, hspace=0.1)
self.ax1 = []
self.ax1.append( self.fig1.add_subplot(1, 4, 1) )
self.ax1[0].set_xlabel(self.labels["trajectory"][0])
self.ax1[0].set_ylabel(self.labels["trajectory"][1])
if equal: self.ax1[0].set_aspect("equal")
self.ax1.append( self.fig1.add_subplot(1, 4, 2, projection='3d') )
self.ax1[1].view_init(30, 60)
self.ax1[1].set_xlabel(self.labels["3D"][0])
self.ax1[1].set_ylabel(self.labels["3D"][1])
self.ax1[1].set_zlabel(self.labels["3D"][2])
self.ax1.append( self.fig1.add_subplot(1, 4, 3) )
self.ax1[2].set_xlabel(r'$f$')
self.ax1[2].set_ylabel("FFT"+self.labels["FFT"])
self.ax1.append( self.fig1.add_subplot(1, 4, 4) )
self.ax1[3].set_xlabel(r'$t$')
self.ax1[3].set_ylabel(r'$\lambda_{max}$')
plt.show()
def __slidersVal(self):
values = []
for s in self.sliders:
values.append(s.val)
return values
def __odeWrap(self, t, y):
return self.ode(t, y, self.__slidersVal())
def __getPoincare(self, y0):
solver = DOP853(self.__odeWrap, 0, y0, self.time_slider.val, max_step=self.maxstep, vectorized=self.vector)
pmap = []
prev_state = y0
while True:
try:
solver.step()
except Exception as e: break
if ((solver.y[self.poincInd] > 0. and prev_state[self.poincInd] < 0.) or (solver.y[self.poincInd] < 0. and prev_state[self.poincInd] > 0.)):
dx = solver.y[self.poincInd] - prev_state[self.poincInd]
yp = prev_state + ((solver.y - prev_state)/dx)*(0.-prev_state[self.poincInd])
pmap.append( self.pmapWrap(yp))
prev_state = solver.y
return pmap[1:]
def __calcLines(self, key):
y0 = self.pickSample(self.points[key]["xy"], self.__slidersVal())
dev = np.random.uniform(0., self.devtol, size=y0.shape[0])
eta = np.linalg.norm(dev)
#calculating
log_k = 0.
y_dev = y0+dev
t = np.linspace(0., self.time_slider.val, int(self.time_slider.val/(self.maxstep*0.1)))
sol, lyap = [y0], []
for i in range(len(t)-1):
solver_ref = DOP853(self.__odeWrap, t[i], sol[-1], t[i+1], max_step=self.maxstep*0.1, vectorized=self.vector)
while True:
try: solver_ref.step()
except Exception as e: break
sol.append(solver_ref.y)
solver_dev = DOP853(self.__odeWrap, t[i], y_dev, t[i+1], max_step=self.maxstep, vectorized=self.vector)
while True:
try: solver_dev.step()
except Exception as e: break
y_dev = solver_dev.y
delta = np.linalg.norm(sol[-1]-y_dev)
if delta > self.lyaptol:
k = eta/delta
# reskaliranje
y_dev = sol[-1] + k * (y_dev - sol[-1])
log_k -= np.log(k)
delta = eta
lyap.append( (np.log(delta/eta) + log_k)/t[i+1] )
lyap = np.array(lyap)
sol = np.transpose(sol)
return t, self.trajWrap(sol, t), self.wrap3d(sol), self.fftwrap(sol), lyap
def __plotLines(self, key):
t, traj, traj3d, fftsol, lyap = self.__calcLines(key)
#plotting
self.points[key]["lines"].append( self.ax1[0].plot( traj[0], traj[1], linewidth=0.2 ) )
self.points[key]["lines"].append( self.ax1[1].plot( traj3d[0], traj3d[1], traj3d[2], linewidth=0.2 ) )
N = t.shape[0]
yf = fft( fftsol )
xf = fftfreq(N, t[1]-t[0])[:N//2]
self.points[key]["lines"].append( self.ax1[2].loglog( xf, 2./N * np.abs(yf[0:N//2]), linewidth=0.5 ) )
self.points[key]["lines"].append( self.ax1[3].plot( t[1:], lyap ) )
self.__updateFig1()
def __updateLines(self, val):
for key in list( self.points.keys() ):
if self.pickSample(self.points[key]["xy"], self.__slidersVal()) is not None:
t, traj, traj3d, fftsol, lyap = self.__calcLines(key)
#re-plotting
self.points[key]["lines"][0][0].set_xdata( traj[0] )
self.points[key]["lines"][0][0].set_ydata( traj[1] )
self.points[key]["lines"][1][0].set_xdata( traj3d[0] )
self.points[key]["lines"][1][0].set_ydata( traj3d[1] )
self.points[key]["lines"][1][0].set_3d_properties( traj3d[2] )
N = t.shape[0]
yf = fft( fftsol )
xf = fftfreq(N, t[1]-t[0])[:N//2]
self.points[key]["lines"][3][0].set_xdata( xf )
self.points[key]["lines"][3][0].set_ydata( 2./N * np.abs(yf[0:N//2]) )
self.points[key]["lines"][3][0].set_xdata( t[1:] )
self.points[key]["lines"][3][0].set_ydata( lyap )
else: self.__removeLines(key)
self.__updateFig1()
def __removeLines(self, key):
for i in range(len(self.points[key]["lines"])):
self.ax1[i].lines.remove(self.points[key]["lines"][i][0])
self.points.pop(key)
key.remove()
self.fig.canvas.draw_idle()
self.__updateFig1()
@staticmethod
def __calcLimits(adata):
adata = np.concatenate(adata, axis=None)
a_lim = (np.amin(adata), np.amax(adata))
return ( a_lim[0]-np.abs(a_lim[0])*0.1, a_lim[1]+np.abs(a_lim[1])*0.1 )
def __updateFig1(self):
self.fig1.canvas.draw_idle()
for ax in self.ax1:
ax.relim()
ax.autoscale_view()
def __update(self, val):
y0_ar = self.sampling(self.nTracks, self.__slidersVal())
for i in range(int(self.nTracks)):
pmap = self.__getPoincare(y0_ar[i])
if len(pmap) >= 1: self.tracks[i].set_offsets( pmap )
else:
self.tracks[i].remove()
self.tracks[i] = self.ax.scatter([], [], s=0.5, color=self.colors[i])
self.fig.canvas.draw_idle()
print(self.__slidersVal())
self.__updateLines(val)
def __reset(self, event):
self.time_slider.reset()
for s in self.sliders:
s.reset()
def __clear(self, event):
for key in list(self.points.keys()):
self.__removeLines(key)
self.__updateFig1()
def __auto(self, event):
offx, offy = [], []
for i in range(self.nTracks):
off = np.array(self.tracks[i].get_offsets().data)
if len(off) > 0:
offx.append( off[:,0] )
offy.append( off[:,1] )
for key in self.points.keys():
off = np.array(key.get_offsets().data)
offx.append( off[:,0] )
offy.append( off[:,1] )
self.ax.set_xlim( self.__calcLimits(offx) )
self.ax.set_ylim( self.__calcLimits(offy) )
# self.ax.relim()
# self.ax.autoscale()
def __onClick(self, event):
dpi = self.fig.get_dpi()
if event.x > 0.15*7*dpi and event.x < 0.92*7*dpi and event.y > self.bottomL*self.L*dpi and event.y < self.topL*self.L*dpi and event.button is MouseButton.LEFT:
if self.pickSample((event.xdata, event.ydata), self.__slidersVal()) is not None:
key = self.ax.scatter(event.xdata, event.ydata, marker="X", edgecolors="k", s=50, picker=True, pickradius=1)
print(event.x, event.y, event.xdata, event.ydata, event.button)
self.fig.canvas.draw_idle()
self.points[key] = {"xy":(event.xdata, event.ydata),"lines":[]}
self.__plotLines(key)
def __onPick(self, event):
if event.mouseevent.button is MouseButton.RIGHT:
print(event.artist, event.mouseevent.button)
self.__removeLines(event.artist)