-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain.py
465 lines (398 loc) · 22.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
"""
Project name: Prize Pick Predictions
Author: Kevin Huy Trinh
Date created: March 2022
Python Version: 3.11.1
Dependencies: Requirement.txt
Description: Python program that makes recommendations on
betting in favor/against a player's prize pick line_score
value using a linear regression machine learning algorithm
that takes into account the opposing team's elo, and the
desired player's current seasonal score in diff stat types.
api link --> https://api.prizepicks.com/projections?league_id=7
"""
import time
from utils.json_parser import *
from utils.bet_recommendation import *
from utils.current_player_stats import *
import requests
# from utils.team_finder import *
from utils.calculate_elo import *
from utils.get_all_matches import *
from utils.json_functions import *
from selenium import webdriver
from selenium.webdriver.firefox.service import Service
from selenium.webdriver.firefox.options import Options
from bs4 import BeautifulSoup
import json
json_dir_location = "json files"
pre_json = "json files/pre_formatted_projections.json" # where we copied and paste api into
post_json = "json files/post_formatted_projections.json" # organized json file
points_json = "json files/points.json" # player points recommendations json
assists_json = "json files/assists.json" # player assists recommendations json
rebounds_json = "json files/rebounds.json" # player rebounds recommendations json
points_assists_json = "json files/points_assists.json" # player pts+asts recommendations json
points_rebounds_json = "json files/points_rebounds.json" # player pts+rebs recommendations json
points_assists_rebounds_json = "json files/points_assists_rebounds.json" # player pts+asts+rebs recommendations json
season_matches_json = "json files/match_results.json" # displays the season's match results
team_elos_json = "json files/team_elos.json" # All 30 NBA team's elo ratings and history
wipe_json_files(json_dir_location) # we clean all json files for new data only
print("""
______ _ _____ _ _ _____ _ _ _ _
| __ \ (_) | __ (_) | | | __ \ | (_) | | (_)
| |__) | __ _ _______| |__) | ___| | _| |__) | __ ___ __| |_ ___| |_ _ ___ _ __ ___
| ___/ '__| |_ / _ \ ___/ |/ __| |/ / ___/ '__/ _ \/ _` | |/ __| __| |/ _ \| '_ \/ __|
| | | | | |/ / __/ | | | (__| <| | | | | __/ (_| | | (__| |_| | (_) | | | \__ |
|_| |_| |_/___\___|_| |_|\___|_|\_\_| |_| \___|\__,_|_|\___|\__|_|\___/|_| |_|___/\n""")
""" =============================================
Because PP does not allow public API, this is a work around
that uses a webdriver to access the PP end point to scrape the data
IMPORTANT: This method uses Firefox and requires a Gecko Driver
Download the correct version here: https://github.com/mozilla/geckodriver/releases
================================================= """
current_season_year = 2023 # 2023 means 2023-24 NBA season (Change if needed)
get_all_matches(season_matches_json, current_season_year) # params (read file, current season yyyy)
start_calculating(season_matches_json, team_elos_json) # params(read file, write file)
sort_and_print(team_elos_json) # will sort and print out elo table
# you can change this out if you want to use a different driver/browser combo
# information about driver and browser in README.md
gecko_path = "./drivers/geckodriver.exe"
service = Service(gecko_path)
driver = webdriver.Firefox()
url = 'https://api.prizepicks.com/projections?league_id=7'
driver.get(url)
content = driver.page_source
soup = BeautifulSoup(content, 'html.parser')
# Find the 'div' tag with ID "json"
json_div = soup.find('div', {'id': 'json'})
# Check if 'json_div' is not None before saving its content to a JSON file
if json_div:
json_content = json_div.get_text(strip=True, separator='\n')
try:
# Try to parse the extracted content as JSON
json_data = json.loads(json_content)
filename = pre_json
with open(filename, 'w', encoding='utf-8') as json_file:
json.dump(json_data, json_file, indent=2)
print(f"[🟢] Successfully pulled and saved Prize Pick data to {filename}\n")
except json.JSONDecodeError:
print("[🔴]Invalid JSON content.")
else:
print("[🔴] No 'div' tag with ID 'json' found on the page.")
driver.quit()
""" =============================================
* Here we call parse/clean our json file and extract
* only relevant information that we need using the
* parse_json_file() and assigning the data var to it
============================================= """
data = parse_json_file(pre_json, post_json)
num_players = len(data) # number of players we collected from parsing
players_printed = 0 # total # of players we were able to collect
table = [] # table were printing out
n_a = "--" # default value if a stat is NULL
# Each stat type is going to be separated into its own json file
default_data = []
# Open or create each JSON file and initialize data
points_data = open_or_create_json(points_json, default_data)
assists_data = open_or_create_json(assists_json, default_data)
rebounds_data = open_or_create_json(rebounds_json, default_data)
points_assists_data = open_or_create_json(points_assists_json, default_data)
points_rebounds_data = open_or_create_json(points_rebounds_json, default_data)
points_assists_rebounds_data = open_or_create_json(points_assists_rebounds_json, default_data)
""" =============================================
* Looping through each player inside our new
* parsed and cleaned up json file
============================================= """
for idx, key in enumerate(data):
# the attribute values
name = data[key]['name']
team_name = data[key]['attributes']['team_name']
team_city_state = data[key]['attributes']['market']
photo_link = data[key]['attributes']['image_url']
player_position = data[key]['attributes']['position']
# initialize values to "--" which is N/A
points = n_a
rebounds = n_a
assists = n_a
turnovers = n_a
points_assists = n_a
points_rebounds = n_a
points_rebounds_assists = n_a
# check if player has stat_type and update value accordingly
for item in data[key]['strike_values']:
if item['stat_type'] == 'Points':
points = item['line_score']
elif item['stat_type'] == 'Turnovers':
turnovers = item['line_score']
elif item['stat_type'] == 'Rebounds':
rebounds = item['line_score']
elif item['stat_type'] == 'Assists':
assists = item['line_score']
elif item['stat_type'] == 'Pts+Asts':
points_assists = item['line_score']
elif item['stat_type'] == 'Pts+Rebs':
points_rebounds = item['line_score']
elif item['stat_type'] == 'Pts+Rebs+Asts':
points_rebounds_assists = item['line_score']
try:
player_name = name
num_attempts = 1
min_attempts, max_attempts = 1, 2+1 # 5 attempts to get online player data
for i in range(min_attempts, max_attempts):
num_attempts = i
try:
fp_player_stats, fp_player_id, fp_team_name, fp_points, fp_rebounds, fp_assists, fp_ftm, fp_points_rebounds, fp_points_assists, fp_points_rebounds_assists = get_player_stats(
player_name, current_season_year)
# making the recommendations on points
recommendation_pts = predict(points, fp_points, n_a)
recommendation_reb = predict(rebounds, fp_rebounds, n_a)
recommendation_ast = predict(assists, fp_assists, n_a)
# find the combined stats
recommendation_pts_ast = predict(points_assists, fp_points + fp_assists, n_a)
recommendation_pts_reb = predict(points_rebounds, fp_points + fp_assists, n_a)
recommendation_pts_ast_reb = predict(points_rebounds_assists, fp_points + fp_assists + fp_rebounds, n_a)
table.append(
[idx + 1, name, team_name, points, fp_points, recommendation_pts, rebounds, fp_rebounds,
recommendation_reb,
assists, fp_assists, recommendation_ast, points_assists,
points_rebounds, points_rebounds_assists])
"""
=============================================
* Calculating the absolute value of the differences
* between the predicted score and line scores for the player
* so longer distance between the two means more likely to hit
=============================================
"""
diff_pts = round(abs(fp_points - points), 5) if isinstance(fp_points, (int, float)) and isinstance(points, (
int, float)) else n_a
diff_reb = round(abs(fp_rebounds - rebounds), 5) if isinstance(fp_rebounds, (int, float)) and isinstance(rebounds,
(
int,
float)) else n_a
diff_assists = round(abs(fp_assists - assists), 5) if isinstance(fp_assists, (int, float)) and isinstance(assists,
(
int,
float)) else n_a
diff_pts_ast = round(abs((fp_points + fp_assists) - points_assists), 5) if isinstance(fp_points,
(
int, float)) and isinstance(
fp_assists, (int, float)) and isinstance(points_assists, (int, float)) else n_a
diff_pts_reb = round(abs((fp_points + fp_rebounds) - points_rebounds), 5) if isinstance(fp_points,
(int,
float)) and isinstance(
fp_rebounds, (int, float)) and isinstance(points_rebounds, (int, float)) else n_a
diff_pts_ast_reb = round(abs((fp_points + fp_assists + fp_rebounds) - points_rebounds_assists), 5) if isinstance(
fp_points, (int, float)) and isinstance(fp_assists, (int, float)) and isinstance(fp_rebounds, (
int, float)) and isinstance(points_rebounds_assists, (int, float)) else n_a
""" =============================================
* Here we append the values and split them into
* their own json files for the flask app.py;
* if they are missing a value we do NOT append.
============================================= """
# Appending points json
if recommendation_pts != n_a:
points_data.append({
player_name: {
"general": {
"player_id": fp_player_id,
"team_name": team_name,
"team_market": team_city_state,
"picture_link": photo_link,
"player_position": player_position
},
"stats": {
"type": "points",
"strike_value": points,
"predicted_value": fp_points,
"bet_recommendation": recommendation_pts,
"difference": diff_pts
}
}
})
# Appending assists json
if recommendation_ast != n_a:
assists_data.append({
player_name: {
"general": {
"player_id": fp_player_id,
"team_name": team_name,
"team_market": team_city_state,
"picture_link": photo_link,
"player_position": player_position
},
"stats": {
"type": "assists",
"strike_value": assists,
"predicted_value": fp_assists,
"bet_recommendation": recommendation_ast,
"difference": diff_assists
}
}
})
# Appending assists json
if recommendation_reb != n_a:
rebounds_data.append({
player_name: {
"general": {
"player_id": fp_player_id,
"team_name": team_name,
"team_market": team_city_state,
"picture_link": photo_link,
"player_position": player_position
},
"stats": {
"type": "rebounds",
"strike_value": rebounds,
"predicted_value": fp_rebounds,
"bet_recommendation": recommendation_reb,
"difference": diff_reb
}
}
})
# Appending points + assists json
if recommendation_pts_ast != n_a:
points_assists_data.append({
player_name: {
"general": {
"player_id": fp_player_id,
"team_name": team_name,
"team_market": team_city_state,
"picture_link": photo_link,
"player_position": player_position
},
"stats": {
"type": "pts+ast",
"strike_value": points_assists,
"predicted_value": fp_points + fp_assists,
"bet_recommendation": recommendation_pts_ast,
"difference": diff_pts_ast
}
}
})
# Appending points + rebounds json
if recommendation_pts_reb != n_a:
points_rebounds_data.append({
player_name: {
"general": {
"player_id": fp_player_id,
"team_name": team_name,
"team_market": team_city_state,
"picture_link": photo_link,
"player_position": player_position
},
"stats": {
"type": "pts+rebs",
"strike_value": points_rebounds,
"predicted_value": fp_points + fp_rebounds,
"bet_recommendation": recommendation_pts_reb,
"difference": diff_pts_reb
}
}
})
# Appending points + assists + rebounds json
if recommendation_pts_ast_reb != n_a:
points_assists_rebounds_data.append({
player_name: {
"general": {
"player_id": fp_player_id,
"team_name": team_name,
"team_market": team_city_state,
"picture_link": photo_link,
"player_position": player_position
},
"stats": {
"type": "pts+rebs+asts",
"strike_value": points_rebounds_assists,
"predicted_value": fp_points + fp_assists + fp_rebounds,
"bet_recommendation": recommendation_pts_ast_reb,
"difference": diff_pts_ast_reb
}
}
})
break
except:
if i < max_attempts - 1:
load_status = "FAILED"
start_str = f"[🟡] Load Status: {load_status:<15} Player: {player_name:<25}"
print(
f"{start_str:<60} Attempts: {num_attempts}/{(max_attempts - 1):<5} ({n_a:0>2}/{n_a} | {n_a}%) \t[In: {i} sec(s)]")
time.sleep(i)
else:
load_status = "FAILED"
start_str = f"[🟡] Load Status: {load_status:<15} Player: {player_name:<25}"
print(
f"{start_str:<60} Attempts: {num_attempts}/{(max_attempts - 1):<5} ({n_a:0>2}/{n_a} | {n_a}%) \t[Final attempt]")
""" =============================================
* Writing the data into the json file with an indent
* of 2 for each stat type for every player
============================================= """
with open(points_json, 'w') as f_points:
json.dump(points_data, f_points, indent=2)
with open(assists_json, 'w') as f_assists:
json.dump(assists_data, f_assists, indent=2)
with open(rebounds_json, 'w') as f_rebounds:
json.dump(rebounds_data, f_rebounds, indent=2)
with open(points_assists_json, 'w') as f_points_assists:
json.dump(points_assists_data, f_points_assists, indent=2)
with open(points_rebounds_json, 'w') as f_points_rebounds:
json.dump(points_rebounds_data, f_points_rebounds, indent=2)
with open(points_assists_rebounds_json, 'w') as f_points_assists_rebounds:
json.dump(points_assists_rebounds_data, f_points_assists_rebounds, indent=2)
players_printed += 1
load_status = "Successful"
start_str = f"[🟢] Load Status: {load_status:<15} Player: {player_name:<25}"
players_percentage = round((players_printed / num_players) * 100)
print(f"{start_str:<60} Attempts: {num_attempts}/{(max_attempts - 1):<5} ({players_printed:0>2}/{num_players} | {players_percentage:0>2}%)")
except Exception as e:
""" =============================================
* runs if we failed to get the player's actual season
* average on the ball don't lie api. (so we skip player)
============================================= """
player_name = name
print(f"[🔴] Failed data loaded for: {player_name}. Exception: {e}. Skipping.")
time.sleep(1.25) # help avoid being rate limited (60 req per min)
# number of players with at least 1 missing stat type
num_na_stats = sum(1 for row in table if n_a in row)
print(f"\n{num_na_stats} players have at least one missing stat.")
print(f"A total of {num_players} player objects in json file.")
print(f"{players_printed}/{num_players} were printed out in table format.\n\n")
""" =============================================
* Flask application python file that displays
* the json files from the "./json files/*.json"
============================================= """
from flask import Flask, render_template, request
import json
app = Flask(__name__)
# points.json is default when loading up
with open('json files/points.json') as f:
data = json.load(f)
# Route for the home page
@app.route('/')
def index():
""" =============================================
* Check if a data source parameter was passed in the URL
* This allows the user to switch between json files
* to view the recommendations for different stat types
============================================= """
data_source = request.args.get('data_source', 'points')
if data_source == 'points':
with open('json files/points.json') as f:
data = json.load(f)
elif data_source == 'rebounds':
with open('json files/rebounds.json') as f:
data = json.load(f)
elif data_source == 'assists':
with open('json files/assists.json') as f:
data = json.load(f)
elif data_source == 'pts_asts':
with open('json files/points_assists.json') as f:
data = json.load(f)
elif data_source == 'pts_rebs':
with open('json files/points_rebounds.json') as f:
data = json.load(f)
elif data_source == 'pts_rebs_asts':
with open('json files/points_assists_rebounds.json') as f:
data = json.load(f)
return render_template('index.html', data=data)
if __name__ == '__main__':
app.run()