-
Notifications
You must be signed in to change notification settings - Fork 131
/
Copy patheval_kitti.py
142 lines (103 loc) · 3.99 KB
/
eval_kitti.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import numpy as np
import matplotlib.pyplot as plt
import sys
def gen_data(ground_time, res_time, ground_data):
ground_time = ground_time
res_time = res_time
ground_data = ground_data
time_mark = 0
time = []
data_1 = []
for num in range(len(ground_data)):
data_1.append(np.concatenate(([ground_time[num]], ground_data[num])))
data_2 = []
for num in range(len(res_time)):
while not np.allclose(data_1[time_mark][0], res_time[num][0]):
time_mark+=1
data_2.append(data_1[time_mark])
return data_2
def get_coo(data):
points = [[],[],[]]
for num in range(len(data)):
points[0].append(data[num][4])
points[1].append(data[num][8])
points[2].append(data[num][12])
return points
def get_points(data):
points = [[],[],[]]
for num in range(len(data)):
points[0].append(data[num][1])
points[1].append(data[num][2])
points[2].append(data[num][3])
return points
def align(model,data):
"""Align two trajectories using the method of Horn (closed-form).
Input:
model -- first trajectory (3xn)
data -- second trajectory (3xn)
Output:
rot -- rotation matrix (3x3)
trans -- translation vector (3x1)
trans_error -- translational error per point (1xn)
"""
np.set_printoptions(precision=3,suppress=True)
model_mean=[[model.mean(1)[0]], [model.mean(1)[1]], [model.mean(1)[2]]]
data_mean=[[data.mean(1)[0]], [data.mean(1)[1]], [data.mean(1)[2]]]
model_zerocentered = model - model_mean
data_zerocentered = data - data_mean
W = np.zeros( (3,3) )
for column in range(model.shape[1]):
W += np.outer(model_zerocentered[:,column],data_zerocentered[:,column])
U,d,Vh = np.linalg.linalg.svd(W.transpose())
S = np.matrix(np.identity( 3 ))
if(np.linalg.det(U) * np.linalg.det(Vh)<0):
S[2,2] = -1
rot = U*S*Vh
rotmodel = rot*model_zerocentered
dots = 0.0
norms = 0.0
for column in range(data_zerocentered.shape[1]):
dots += np.dot(data_zerocentered[:,column].transpose(),rotmodel[:,column])
normi = np.linalg.norm(model_zerocentered[:,column])
norms += normi*normi
s = float(dots/norms)
# print ("scale: %f " % s)
trans = data_mean - s*rot * model_mean
model_aligned = s*rot * model + trans
alignment_error = model_aligned - data
trans_error = np.sqrt(np.sum(np.multiply(alignment_error,alignment_error),0)).A[0]
return rot,trans,trans_error, s
if __name__ == '__main__':
#Path to the times.txt in KITTI dataset
ground_time = np.loadtxt('data_odometry_gray/dataset/sequences/04/times.txt')
#Path to the KeyFrameTrajectory.txt file
# path = sys.argv[1]
res_time = np.loadtxt(sys.argv[1])
#Path to the ground truth file
ground_data = np.loadtxt('data_odometry_gray/dataset/poses/04.txt')
data= gen_data(ground_time, res_time, ground_data)
ground_points = np.asarray(get_coo(data))
re_points = np.asarray(get_points(res_time))
# print(type(ground_points))
rot,trans,trans_error,s = align(re_points, ground_points)
# print(rot)
re_fpoints = s*rot*re_points+trans
# print(re_fpoints[0])
# print(trans_error)
plt.axis('equal')
plt.scatter(ground_points[0], ground_points[2], s=0.1)
plt.scatter(list(re_fpoints[0]), list(re_fpoints[2]), s=0.1, c='red')
aa = list(re_fpoints[0])
x = aa[0].tolist()
aa = list(re_fpoints[2])
y = aa[0].tolist()
print ("compared_pose_pairs %d pairs"%(len(trans_error)))
print ("absolute_translational_error.rmse %f m"%np.sqrt(np.dot(trans_error,trans_error) / len(trans_error)))
print ("absolute_translational_error.mean %f m"%np.mean(trans_error))
print ("absolute_translational_error.median %f m"%np.median(trans_error))
print ("absolute_translational_error.std %f m"%np.std(trans_error))
print ("absolute_translational_error.min %f m"%np.min(trans_error))
print ("absolute_translational_error.max %f m"%np.max(trans_error))
# for num in range(len(ground_points[0])):
# plt.plot([ground_points[0][num], x[0][num]], [ground_points[2][num], y[0][num]], c = 'green')
plt.show()