-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstat.py
61 lines (54 loc) · 2.16 KB
/
stat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
from compression import *
if __name__ == '__main__':
teacher_accs = {
'vgg19_cifar100_' : 73.71,
'resnet18_cifar100_' : 78.68,
'resnet34_cifar100_' : 78.71,
'shufflenet_cifar100_' : 71.14,
'vgg19_cifar10_' : 93.91,
'resnet18_cifar10_' : 95.24,
'resnet34_cifar10_' : 95.57,
'shufflenet_cifar10_' : 90.87,
}
path_list = [
'./save/resnet34_cifar100_0',
]
for path in path_list:
if not(os.path.exists(path)):
print('Path \'%s\' does not exist!' % (path))
continue
print(path)
teacher_acc = 0.0
for key, val in teacher_accs.items():
if path.find(key) != -1:
teacher_acc = val
if teacher_acc == 0.0:
print('Teacher acc not given!')
continue
else:
print('Teacher acc:', teacher_acc)
# architecture index, number of parameters, compression ratio, compression times, accuracy before & after fully training, f(x) before & after fully training
print('Index\t#Params\tRatio\tTimes\tAcc before\tAcc after\tf(x) before\tf(x) after')
best_index = 0
best_reward2 = 0
for i in range(opt.co_best_n):
arch_path = '%s/arch_%d.pth' % (path, i)
if not(os.path.exists(arch_path)):
continue
arch = torch.load(arch_path)
param_n = arch.param_n()
reward1 = arch.reward
comp1 = arch.comp
comp2 = 1.0 / (1.0 - comp1)
acc1 = arch.acc
arch_path = '%s/fully_%d.pth' % (path, i)
if not(os.path.exists(arch_path)):
continue
arch = torch.load(arch_path)
acc2 = arch.acc
reward2 = arch.comp * (2 - arch.comp) * acc2 / teacher_acc
print('%d\t%d\t%.4f\t%.2f\t%.2f\t\t%.2f\t\t%.4f\t\t%.4f' % (i, param_n, comp1, comp2, acc1, acc2, reward1, reward2))
if reward2 > best_reward2:
best_index = i
best_reward2 = reward2
print('The best is arch %d with f(x) = %.4f' % (best_index, best_reward2))