-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain.py
193 lines (172 loc) · 6.55 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import os
import argparse
import logging
from datetime import datetime
import io
import math
import numpy as np
import random
from glob import glob
import pickle
import torch
from torch.utils.data import DataLoader
import torch.nn as nn
import torch.nn.functional as F
from sentence_transformers import models
from sentence_transformers import LoggingHandler, util, InputExample
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator
from sentence_transformers_congen import SentenceTransformer, losses
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--model_save_path",
type=str,
default=None,
required=True,
help="The output directory where the model checkpoints will be written.")
parser.add_argument("--train_data_path",
type=str,
default=None,
required=True,
help="The directory of train data.")
parser.add_argument("--dev_data_path",
type=str,
default=None,
required=True,
help="The directory of dev data.")
parser.add_argument("--teacher_model_name_or_path",
type=str,
default=None,
required=True,
help="The teacher model checkpoint for weights initialization.")
parser.add_argument("--student_model_name_or_path",
type=str,
default=None,
required=True,
help="The student model checkpoint for weights initialization.")
parser.add_argument("--train_batch_size",
type=int,
default=128,
help="Batch size for training.")
parser.add_argument("--eval_batch_size",
type=int,
default=128,
help="Batch size for evaluation.")
parser.add_argument("--max_seq_length",
type=int,
default=128,
help="Student model max. lengths for inputs (number of word pieces).")
parser.add_argument("--num_epochs",
type=int,
default=20,
help="Total number of training epochs.")
parser.add_argument("--learning_rate",
type=float,
default=5e-4,
help="The initial learning rate for AdamW.")
parser.add_argument("--student_temp",
type=float,
default=0.05,
help="Temperature for the student encoder.")
parser.add_argument("--teacher_temp",
type=float,
default=0.05,
help="Temperature for the teacher encoder.")
parser.add_argument("--queue_size",
type=int,
default=16534,
help="The size of instance queue")
parser.add_argument("--gpu_device",
type=int,
default=0,
help="gpu device number")
parser.add_argument("--early_stopping_patience",
type=int,
default=7,
help="Early stopping criteria: patience")
parser.add_argument("--seed",
type=int,
default=1000,
help="The random seed value")
args = parser.parse_args()
print(args)
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu_device)
device = "cuda" if torch.cuda.is_available() else "cpu"
torch.manual_seed(args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
logging.basicConfig(format='%(asctime)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
level=logging.INFO,
handlers=[LoggingHandler()])
logger = logging.getLogger(__name__)
logging.info(f"Loading teacher model: {args.teacher_model_name_or_path}")
teacher_model = SentenceTransformer(args.teacher_model_name_or_path)
logging.info("Preparing training dataset")
all_pairs = open(args.train_data_path, mode="rt", encoding="utf-8").readlines()
all_pairs = [sample.strip().split('\t') for sample in all_pairs]
# Two lists of sentences
sents1 = [p[0] for p in all_pairs]
sents2 = [p[1] for p in all_pairs]
try:
filename = open("data/sents1_encoded.pkl", "rb")
sents1_encoded = pickle.load(filename)
filename.close()
except:
sents1_encoded = teacher_model.encode(sents1, convert_to_tensor=True, normalize_embeddings=True, device=device)
filename = 'data/sents1_encoded.pkl'
pickle.dump(sents1_encoded, open(filename, 'wb'), protocol=4)
teacher_dimension = sents1_encoded.shape[1]
logging.info(f"Teacher dimension size:{teacher_dimension}")
logging.info(f"Loading student model: {args.student_model_name_or_path}")
student_word_embedding_model = models.Transformer(args.student_model_name_or_path, max_seq_length=args.max_seq_length)
student_dimension = student_word_embedding_model.get_word_embedding_dimension()
student_pooling_model = models.Pooling(student_dimension)
dense_model = models.Dense(in_features=student_dimension, out_features=teacher_dimension, activation_function=nn.Tanh())
student_model = SentenceTransformer(modules=[student_word_embedding_model, student_pooling_model, dense_model])
logging.info(f"Create instance queue")
text_in_queue = np.random.RandomState(16349).choice(sents1, args.queue_size, replace=False)
train_samples = []
instance_queue = []
text_in_q_set = set(text_in_queue)
for s1, s2, s1_encoded in zip(sents1, sents2, sents1_encoded):
if s1 not in text_in_q_set:
train_samples.append(InputExample(texts=[s1, s2], label=s1_encoded))
else:
instance_queue.append(s1)
train_dataloader = DataLoader(train_samples, shuffle=True, batch_size=args.train_batch_size)
instance_queue_encoded = teacher_model.encode(instance_queue,
convert_to_tensor=True,
normalize_embeddings=True,
device=device)
training_loss = losses.ConGenLoss(instanceQ_encoded=instance_queue_encoded,
model=student_model,
student_temp=args.student_temp,
teacher_temp=args.teacher_temp)
del instance_queue, sents1_encoded, teacher_model, instance_queue_encoded
warmup_steps = math.ceil(len(train_dataloader) * args.num_epochs * 0.1) # 10% of train data for warm-up
evaluation_steps = 512
logger.info("Load evaluator for STSBenchmark")
dev_samples = []
with io.open(args.dev_data_path, "r", encoding="utf-8") as f:
for line in f:
text = line.strip().split("\t")
if text[0] == 'dev':
sentence1 = text[6]
sentence2 = text[7]
score = float(text[5]) / 5.0 #Normalize score to range 0 ... 1
dev_samples.append(InputExample(texts=[sentence1, sentence2], label=score))
dev_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, batch_size=args.eval_batch_size, name='sts-dev')
logger.info("Start training")
start = datetime.now()
student_model.fit(train_objectives=[(train_dataloader, training_loss)],
evaluator=dev_evaluator,
epochs=args.num_epochs,
warmup_steps=warmup_steps,
evaluation_steps=evaluation_steps,
output_path=args.model_save_path,
optimizer_params={"lr": args.learning_rate, 'eps': 1e-6, 'correct_bias': False},
use_amp=True,
early_stopping_patience=args.early_stopping_patience)
stop = datetime.now()
run_time = stop - start
logger.info("Training time: " + str(run_time) + " s")