Skip to content

Latest commit

 

History

History
9 lines (5 loc) · 854 Bytes

README.md

File metadata and controls

9 lines (5 loc) · 854 Bytes

SUGAR Geometry-Based Data Generation

SUGAR is a tool for generating high dimensional data that follows a low dimensional manifold. SUGAR (Synthesis Using Geometrically Aligned Random-walks) uses a diffusion process to learn a manifold geometry from the data. Then, it generates new points evenly along the manifold by pulling randomly generated points into its intrinsic structure using a diffusion kernel. SUGAR equalizes the density along the manifold by selectively generating points in sparse areas of the manifold.

Ofir Lindenbaum, Jay S. Stanley III, Guy Wolf, Smita Krishnaswamy Geometry-Based Data Generation. 2018. Arxiv

SUGAR has been implemented in Python3 and Matlab. Future support for the package is at https://github.com/stanleyjs/sugar