-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path11.py
35 lines (33 loc) · 986 Bytes
/
11.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from sklearn.metrics import confusion_matrix
import numpy as np
"""
分类任务混淆矩阵函数计算
Args:
ground_truth:分类任务的真值标签
predict:分类任务的预测结果
Returns:
cm:混淆矩阵
precision:每个类别的查准率
recall:每个类别的查全率
"""
#预测与真值的标签
# 获取混淆矩阵
def classifyEvaluation(y_true,y_pred):
cm = confusion_matrix(y_true, y_pred)
FP = cm.sum(axis=0) - np.diag(cm)
FN = cm.sum(axis=1) - np.diag(cm)
TP = np.diag(cm)
TN = cm.sum() - (FP + FN + TP)
precision = TP / (TP+FP) # 查准率
recall = TP / (TP+FN) # 查全率
return cm,precision,recall
if __name__ == '__main__':
y_true = np.array([0,1,2,3])
y_pred = np.array([0,1,0,3])
cm,precision,recall = classifyEvaluation(y_true,y_pred)
print("cm")
print(cm)
# print("precision")
# print(precision)
# print("recall")
# print(recall)