-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrecognize_video.py
108 lines (87 loc) · 3.38 KB
/
recognize_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
# import libraries
import os
import cv2
import imutils
import time
import pickle
import numpy as np
from imutils.video import FPS
from imutils.video import VideoStream
# load serialized face detector
print("Loading Face Detector...")
protoPath = "face_detection_model/deploy.prototxt"
modelPath = "face_detection_model/res10_300x300_ssd_iter_140000.caffemodel"
detector = cv2.dnn.readNetFromCaffe(protoPath, modelPath)
# load serialized face embedding model
print("Loading Face Recognizer...")
embedder = cv2.dnn.readNetFromTorch("openface_nn4.small2.v1.t7")
# load the actual face recognition model along with the label encoder
recognizer = pickle.loads(open("output/recognizer.pickle", "rb").read())
le = pickle.loads(open("output/le.pickle", "rb").read())
# initialize the video stream, then allow the camera sensor to warm up
print("Starting Video Stream...")
vs = VideoStream(src=0).start()
time.sleep(2.0)
# start the FPS throughput estimator
fps = FPS().start()
# loop over frames from the video file stream
while True:
# grab the frame from the threaded video stream
frame = vs.read()
# resize the frame to have a width of 600 pixels (while maintaining the aspect ratio), and then grab the image dimensions
frame = imutils.resize(frame, width=600)
(h, w) = frame.shape[:2]
# construct a blob from the image
imageBlob = cv2.dnn.blobFromImage(
cv2.resize(frame, (300, 300)), 1.0, (300, 300),
(104.0, 177.0, 123.0), swapRB=False, crop=False)
# apply OpenCV's deep learning-based face detector to localize faces in the input image
detector.setInput(imageBlob)
detections = detector.forward()
# loop over the detections
for i in range(0, detections.shape[2]):
# extract the confidence (i.e., probability) associated with the prediction
confidence = detections[0, 0, i, 2]
# filter out weak detections
if confidence > 0.5:
# compute the (x, y)-coordinates of the bounding box for the face
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
# extract the face ROI
face = frame[startY:endY, startX:endX]
(fH, fW) = face.shape[:2]
# ensure the face width and height are sufficiently large
if fW < 20 or fH < 20:
continue
# construct a blob for the face ROI, then pass the blob through our face embedding model to obtain the 128-d quantification of the face
faceBlob = cv2.dnn.blobFromImage(face, 1.0 / 255,
(96, 96), (0, 0, 0), swapRB=True, crop=False)
embedder.setInput(faceBlob)
vec = embedder.forward()
# perform classification to recognize the face
preds = recognizer.predict_proba(vec)[0]
j = np.argmax(preds)
proba = preds[j]
name = le.classes_[j]
# draw the bounding box of the face along with the associated probability
text = "{}: {:.2f}%".format(name, proba * 100)
y = startY - 10 if startY - 10 > 10 else startY + 10
cv2.rectangle(frame, (startX, startY), (endX, endY),
(0, 0, 255), 2)
cv2.putText(frame, text, (startX, y),
cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 0, 255), 2)
# update the FPS counter
fps.update()
# show the output frame
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
# if the `q` key was pressed, break from the loop
if key == ord("q"):
break
# stop the timer and display FPS information
fps.stop()
print("Elasped time: {:.2f}".format(fps.elapsed()))
print("Approx. FPS: {:.2f}".format(fps.fps()))
# cleanup
cv2.destroyAllWindows()
vs.stop()