-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutil_icl.py
154 lines (124 loc) · 6.98 KB
/
util_icl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
from faiss import IndexIDMap, IndexFlatIP
from openicl import PromptTemplate, TopkRetriever, MDLRetriever, RandomRetriever, VotekRetriever
from util_data import get_num_labels
import numpy as np
import json
def get_num_shots(dataset_name):
dataset_ice_nums = {
"sst2": 16,
"adv_sst2": 4,
"squad": 4,
"ag_news": 6,
"ag_news_twitter": 6,
"toxigenic": 6,
"disaster_tweets": 32,
"wilds_civil_comments": 16,
"civil_toxigen": 16,
"rotten_tomatoes_imdb": 4,
"imdb_rotten_tomatoes": 8,
"wilds_amazon": 16,
"boss_sentiment": 6,
"boss_toxicity": 6,
"boss_nli": 6,
"scotus": 4
}
dataset_name = "squad" if dataset_name.startswith("squad") else dataset_name
return dataset_ice_nums[dataset_name]
def get_retriever(icl_method, data, dataset_name, index_split="train"):
icl_method = icl_method.replace("_furthest", "").replace("_centroid", "").replace("_nearest", "")
if icl_method == "topk":
return TopkRetriever(dataset_reader=data, ice_num=get_num_shots(dataset_name), index_split=index_split)
elif icl_method == "mdl":
return MDLRetriever(dataset_reader=data, ice_num=get_num_shots(dataset_name), index_split=index_split)
elif icl_method == "random":
return RandomRetriever(dataset_reader=data, ice_num=get_num_shots(dataset_name), index_split=index_split)
elif icl_method == "votek":
return VotekRetriever(dataset_reader=data, ice_num=get_num_shots(dataset_name), index_split=index_split)
elif icl_method == "kne":
return IndexIDMap(IndexFlatIP(768))
elif icl_method == "static":
return None
else:
raise Exception("Invalid ICL method")
def get_prompt_template(dataset_name):
num_labels = get_num_labels(dataset_name)
tp_dict = {}
dataset_name = "squad" if dataset_name.startswith("squad") else dataset_name
for i in range(num_labels):
tp_dict[i] = f"\n</text> - Label={i}</E>"
template = PromptTemplate(tp_dict, {"text": "</text>"}, ice_token="</E>")
return template
def generate_qa_prompt(exemplars, input_entry):
formatted_exemplars = [f"\nContext: {exemplar['text']}\nQuestion: {exemplar['question']}\nAnswer: {exemplar['label']}\n" for exemplar in exemplars]
with open("prompts/squad.txt", encoding="utf-8") as f:
prompt = f.read()
prompt = prompt.replace("<exemplars>", "".join(formatted_exemplars))
prompt = prompt.replace("<context>", input_entry["text"])
prompt = prompt.replace("<question>", input_entry["question"])
return prompt
def generate_classification_prompt(input_text, exemplars, template, dataset_name):
if input_text is None:
return None
# style_transfer_exemplars = None
# if trim_exemplars:
# style_transfer_exemplars = "".join([f'- "{adaptive_tokenizer.decode(adaptive_tokenizer.encode(exemplar["text"].strip())[:int(1500 / len(exemplars))])}"\n' for exemplar in exemplars])
# else:
# style_transfer_exemplars = "".join(['- "' + exemplar["text"].strip().replace("\n", "") + '"\n' for exemplar in exemplars])
input_text = input_text if isinstance(input_text, list) else [input_text]
prompts = []
for input in input_text:
formatted_exemplars = []
max_words_per_exemplar = 1600 // len(exemplars) if len(exemplars) > 0 else 0
for i in range(len(exemplars)):
if exemplars[i]["text"] == "" or exemplars[i]["text"] == None:
continue
formatted_exemplars.append(
{"label": exemplars[i]["label"], "text": (" ".join(exemplars[i]["text"].split()[:max_words_per_exemplar]) if len(exemplars[i]["text"].split()) >= max_words_per_exemplar else exemplars[i]["text"]).replace("\n", " ").lstrip()}
)
instructions = json.load(open("prompts/instructions.json", encoding="utf-8"))[dataset_name]
prompt_lines = [f"Task: {instructions}"]
for exemplar in reversed(formatted_exemplars):
exemplar_line = f'\n"{exemplar["text"].strip()}" - Label={exemplar["label"]}'
prompt_lines.append(exemplar_line)
# prompt_lines = [formatted_instructions] + ["\n" + template.generate_ice_item(entry, entry["label"]).replace("\n", " ").lstrip() for entry in reversed(formatted_exemplars)]
prompt_lines.append('\nWhat is the label for the following text? You must decide which label the text is."')
formatted_input_text = " ".join(input.split()[:500]) if len(input.split()) >= 500 else input
prompt_lines.append('\n"' + formatted_input_text.replace("\n", " ").strip() + '" - Label=')
prompt = "\n".join(prompt_lines).replace("</s>", " ")
prompts.append(prompt)
return prompts
def generate_prompt(model_name, template, exemplars, input_entry, dataset_name):
prompt = None
if dataset_name.startswith("squad"):
prompt = generate_qa_prompt(exemplars, input_entry)
else:
prompt = generate_classification_prompt(input_entry["text"], exemplars, template, dataset_name)
supported_chat_prompts = {"TheBloke/vicuna-13B-1.1-HF": f"User: {prompt}\nAssistant:", "TheBloke/vicuna-7B-1.1-HF": f"User: {prompt}\nAssistant:"}
return supported_chat_prompts[model_name] if model_name in supported_chat_prompts else prompt
def get_edit_exemplars(dataset, edit_retriever, input_sequence_embedding, exemplar_count, exemplars):
# Get edit pool exemplars - filter out -1 indices
edit_distances, edit_exemplar_indices = edit_retriever.index.search(input_sequence_embedding, k=exemplar_count)
edit_exemplar_indices = [int(index) for index in edit_exemplar_indices[0] if index != -1]
edit_exemplars = [dataset["edits"][index] for index in edit_exemplar_indices]
# Backfill with exemplars from the original dataset
if len(edit_exemplars) < exemplar_count:
exemplar_index = 0
while exemplar_index < 4:
edit_exemplars.append(exemplars[exemplar_index])
exemplar_index += 1
return edit_exemplars
def get_static_exemplars(dataset_name, num_shots):
exemplars_file_path = "prompts/exemplars.json"
exemplars_file = json.load(open(exemplars_file_path, encoding="utf-8"))
return exemplars_file[dataset_name][:num_shots]
def get_dynamic_exemplars(input_text, dataset_name, exemplar_retriever, exemplar_count=None, distance_goal="NA"):
exemplar_count = get_num_shots(dataset_name) if exemplar_count is None else exemplar_count
exemplar_distances = exemplar_indices = None
exemplar_indices = None
retriever_response = exemplar_retriever.get_exemplars(input_text, exemplar_count, distance_goal)
if isinstance(retriever_response, tuple):
exemplar_distances, exemplar_indices = retriever_response
else:
exemplar_indices = retriever_response
mean_distance = np.mean(exemplar_distances[0]) if exemplar_distances is not None else None
return ([exemplar_retriever.dataset_reader.dataset["train"][int(index)] for index in exemplar_indices[0]], mean_distance)