-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathcontinue_train.py
134 lines (102 loc) · 4.71 KB
/
continue_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import torch
from torch.autograd import Variable
import argparse
import copy
import pickle
from Datahelper2 import *
from Model import *
from gloable_parameter import *
# from hyperboard import Agent
# torch.backends.cudnn.benchmark=True
# train 36431 32384
# validate 4048 8095
# test 61191
def continue_train(model_path,epoch,lr,train_batch_size,validate_batch_size,validate_batch_num,resize,train_gpu,validate_gpu=-1):
k=5
weight_decay = 0
momentum = 0.9
criteria2metric = {
'train loss': 'loss',
'valid loss': 'loss'
}
hyperparameters_train = {
'name':'train',
'learning rate': lr,
'batch size': train_batch_size,
'optimizer': 'Adam',
'momentum': 0,
'net':model_path.split('/')[-1],
'epoch': 'No.%d'%epoch,
}
hyperparameters_validate = {
'name':'validate',
'learning rate': lr,
'batch size': train_batch_size,
'optimizer': 'Adam',
'momentum': 0,
'net':model_path.split('/')[-1],
'epoch': 'No.%d'%epoch,
}
# agent = Agent(username='jlb',password='1993610')
# train_loss_show = agent.register(hyperparameters_train, criteria2metric['train loss'])
# validate_loss_show = agent.register(hyperparameters_validate, criteria2metric['valid loss'])
global_step = 0
with open('kdf.pkl', 'rb') as f:
kfold = pickle.load(f,encoding='latin1')
lr = lr*train_batch_size/32
for fold in range(k):
train_index = kfold[fold][0]
validate_index = kfold[fold][1]
model = torch.load(os.path.join(model_path,'fold%d.mod'%fold))
model.cuda(device_id=train_gpu)
optimizer = torch.optim.Adam(model.parameters(), lr=lr,weight_decay=weight_decay)
dset_train = AmazonDateset_train(train_index,IMG_TRAIN_PATH,IMG_EXT,LABEL_PATH,resize=resize)
train_loader = DataLoader(dset_train, batch_size=train_batch_size, shuffle=True, num_workers=4)
print('--------------Epoch %d: train-----------' % epoch)
model.train()
for step, (data, target) in enumerate(train_loader):
data, target = Variable(data), Variable(target)
data = data.cuda(device_id=train_gpu)
target = target.cuda(device_id=train_gpu)
optimizer.zero_grad()
output = model(data)
loss = F.binary_cross_entropy(output, target)
loss.backward()
optimizer.step()
# agent.append(train_loss_show, global_step, loss.data[0])
global_step += 1
if step % 10 == 0:
# model.eval()
# if validate_gpu!=-1:
# model.cuda(validate_gpu)
# dset_validate = AmazonDateset_validate(validate_index, IMG_TRAIN_PATH, IMG_EXT, LABEL_PATH,random_transform=True,resize=resize)
# validate_loader = DataLoader(dset_validate, batch_size=validate_batch_size, shuffle=True, num_workers=4)
# total_vloss = 0
# for vstep, (vdata, vtarget) in enumerate(validate_loader):
# vdata, vtarget = Variable(vdata,volatile=True), Variable(vtarget,volatile=True)
# if validate_gpu!=-1:
# vdata = vdata.cuda(validate_gpu)
# vtarget = vtarget.cuda(validate_gpu)
# else:
# vdata = vdata.cuda(train_gpu)
# vtarget = vtarget.cuda(train_gpu)
#
# voutput = model(vdata)
# vloss = F.binary_cross_entropy(voutput, vtarget)
# total_vloss += vloss.data[0]
# if vstep == (validate_batch_num-1):
# break
# vloss = total_vloss / validate_batch_num
# model.train()
# if validate_gpu!=-1:
# model.cuda(train_gpu)
# agent.append(validate_loss_show, global_step, vloss)
vloss = 0
print('{} Fold{} Epoch{} Step{}: [{}/{} ({:.0f}%)]\tTrain Loss: {:.6f}\tValidate Loss: {:.6f}'.format(model_path.split('/')[-1],fold, epoch,global_step, step * train_batch_size,
len(train_loader.dataset),
100. * step / len(train_loader),
loss.data[0],vloss))
model_save = copy.deepcopy(model)
torch.save(model_save.cpu(), os.path.join(model_path,'fold%d.mod'%(fold)))
print('-----------------------------------------')
print(model_path.split('/')[-1]+' Finished!')