forked from NVIDIA/mellotron
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodules.py
executable file
·161 lines (131 loc) · 6.07 KB
/
modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# adapted from https://github.com/KinglittleQ/GST-Tacotron/blob/master/GST.py
# MIT License
#
# Copyright (c) 2018 MagicGirl Sakura
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
# THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
# FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
# DEALINGS IN THE SOFTWARE.
import torch
import torch.nn as nn
import torch.nn.init as init
import torch.nn.functional as F
class ReferenceEncoder(nn.Module):
'''
inputs --- [N, Ty/r, n_mels*r] mels
outputs --- [N, ref_enc_gru_size]
'''
def __init__(self, hp):
super().__init__()
K = len(hp.ref_enc_filters)
filters = [1] + hp.ref_enc_filters
convs = [nn.Conv2d(in_channels=filters[i],
out_channels=filters[i + 1],
kernel_size=(3, 3),
stride=(2, 2),
padding=(1, 1)) for i in range(K)]
self.convs = nn.ModuleList(convs)
self.bns = nn.ModuleList(
[nn.BatchNorm2d(num_features=hp.ref_enc_filters[i])
for i in range(K)])
out_channels = self.calculate_channels(hp.n_mel_channels, 3, 2, 1, K)
self.gru = nn.GRU(input_size=hp.ref_enc_filters[-1] * out_channels,
hidden_size=hp.ref_enc_gru_size,
batch_first=True)
self.n_mel_channels = hp.n_mel_channels
self.ref_enc_gru_size = hp.ref_enc_gru_size
def forward(self, inputs, input_lengths=None):
out = inputs.view(inputs.size(0), 1, -1, self.n_mel_channels)
for conv, bn in zip(self.convs, self.bns):
out = conv(out)
out = bn(out)
out = F.relu(out)
out = out.transpose(1, 2) # [N, Ty//2^K, 128, n_mels//2^K]
N, T = out.size(0), out.size(1)
out = out.contiguous().view(N, T, -1) # [N, Ty//2^K, 128*n_mels//2^K]
if input_lengths is not None:
input_lengths = torch.ceil(input_lengths.float() / 2 ** len(self.convs))
input_lengths = input_lengths.cpu().numpy().astype(int)
out = nn.utils.rnn.pack_padded_sequence(
out, input_lengths, batch_first=True, enforce_sorted=False)
self.gru.flatten_parameters()
_, out = self.gru(out)
return out.squeeze(0)
def calculate_channels(self, L, kernel_size, stride, pad, n_convs):
for _ in range(n_convs):
L = (L - kernel_size + 2 * pad) // stride + 1
return L
class STL(nn.Module):
'''
inputs --- [N, token_embedding_size//2]
'''
def __init__(self, hp):
super().__init__()
self.embed = nn.Parameter(torch.FloatTensor(hp.token_num, hp.token_embedding_size // hp.num_heads))
d_q = hp.ref_enc_gru_size
d_k = hp.token_embedding_size // hp.num_heads
self.attention = MultiHeadAttention(
query_dim=d_q, key_dim=d_k, num_units=hp.token_embedding_size,
num_heads=hp.num_heads)
init.normal_(self.embed, mean=0, std=0.5)
def forward(self, inputs):
N = inputs.size(0)
query = inputs.unsqueeze(1)
keys = torch.tanh(self.embed).unsqueeze(0).expand(N, -1, -1) # [N, token_num, token_embedding_size // num_heads]
style_embed = self.attention(query, keys)
return style_embed
class MultiHeadAttention(nn.Module):
'''
input:
query --- [N, T_q, query_dim]
key --- [N, T_k, key_dim]
output:
out --- [N, T_q, num_units]
'''
def __init__(self, query_dim, key_dim, num_units, num_heads):
super().__init__()
self.num_units = num_units
self.num_heads = num_heads
self.key_dim = key_dim
self.W_query = nn.Linear(in_features=query_dim, out_features=num_units, bias=False)
self.W_key = nn.Linear(in_features=key_dim, out_features=num_units, bias=False)
self.W_value = nn.Linear(in_features=key_dim, out_features=num_units, bias=False)
def forward(self, query, key):
querys = self.W_query(query) # [N, T_q, num_units]
keys = self.W_key(key) # [N, T_k, num_units]
values = self.W_value(key)
split_size = self.num_units // self.num_heads
querys = torch.stack(torch.split(querys, split_size, dim=2), dim=0) # [h, N, T_q, num_units/h]
keys = torch.stack(torch.split(keys, split_size, dim=2), dim=0) # [h, N, T_k, num_units/h]
values = torch.stack(torch.split(values, split_size, dim=2), dim=0) # [h, N, T_k, num_units/h]
# score = softmax(QK^T / (d_k ** 0.5))
scores = torch.matmul(querys, keys.transpose(2, 3)) # [h, N, T_q, T_k]
scores = scores / (self.key_dim ** 0.5)
scores = F.softmax(scores, dim=3)
# out = score * V
out = torch.matmul(scores, values) # [h, N, T_q, num_units/h]
out = torch.cat(torch.split(out, 1, dim=0), dim=3).squeeze(0) # [N, T_q, num_units]
return out
class GST(nn.Module):
def __init__(self, hp):
super().__init__()
self.encoder = ReferenceEncoder(hp)
self.stl = STL(hp)
def forward(self, inputs, input_lengths=None):
enc_out = self.encoder(inputs, input_lengths=input_lengths)
style_embed = self.stl(enc_out)
return style_embed