forked from FreeApe/VGG-or-MobileNet-SSD
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcaffe_graph_net.py
92 lines (79 loc) · 2.39 KB
/
caffe_graph_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
#!/usr/bin/env python
import caffe
from caffe.proto import caffe_pb2
from google.protobuf import text_format
class structtype:
pass
def loadSolver(fn):
with open(fn) as f:
msg = caffe_pb2.SolverParameter()
text_format.Merge(str(f.read()), msg)
return msg
def loadNet(fn):
with open(fn) as f:
msg = caffe_pb2.NetParameter()
text_format.Merge(str(f.read()), msg)
return msg
def filterNetLayer(net, phase='TRAIN'):
assert phase in ['TRAIN', 'TEST']
if phase == 'TRAIN':
phase = 'TEST'
else:
phase = 'TRAIN'
net2 = structtype()
net2.layer = [l for l in net.layer if phase not in unicode(l)]
return net2
def graphNet(net, fn=None):
from graphviz import Digraph
g = Digraph(filename=fn)
# layer node and blob node
for l in net.layer:
# layer node
g.attr('node', shape='box')
g.node('layer_' + l.name, label=l.name)
# blob node
g.attr('node', shape='ellipse')
for t in l.top:
g.node('blob_' + t, label=t)
for b in l.bottom:
g.node('blob_' + b, label=b)
# edges
for l in net.layer:
name = 'layer_' + l.name
for t in l.top:
g.edge(name, 'blob_' + t)
for b in l.bottom:
g.edge('blob_' + b, name)
return g
def graphNet2(net, fn=None):
# blob as node, layer as edge
from graphviz import Digraph
g = Digraph(filename=fn)
# layer node and blob node
for l in net.layer:
# blob node
g.attr('node', shape='ellipse')
for t in l.top:
g.node('blob_' + t, label=t)
for b in l.bottom:
g.node('blob_' + b, label=b)
# edges
for l in net.layer:
if len(l.top) == 0 or len(l.bottom) == 0:
continue
for t in l.top:
for b in l.bottom:
g.edge('blob_' + b, 'blob_' + t, l.name)
return g
if __name__ == '__main__':
import sys, os
#net = loadNet('lenet_train_test.prototxt')
#solver = loadSolver('lenet_solver.prototxt')
net = loadNet(sys.argv[1])
fn, ext = os.path.splitext(sys.argv[1])
graphNet2(net, 'net.gv').render()
os.rename('net.gv.pdf', fn + '.pdf')
# train_net = filterNetLayer(net, 'TRAIN')
# graphNet2(train_net, 'train_net.gv').render()
# test_net = filterNetLayer(net, 'TEST')
# graphNet2(test_net, 'test_net.gv').render()