-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathmkdocs.yml
427 lines (410 loc) · 22.2 KB
/
mkdocs.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
site_name: Quant Wiki 中文量化百科
site_url: https://quant-wiki.com
site_author: LLMQuant Team
site_description: A comprehensive quantitative trading and finance wiki
# Repository
repo_name: LLMQuant/quant-wiki
repo_url: https://github.com/LLMQuant/quant-wiki
edit_uri: edit/main/docs/
# Copyright
copyright: Copyright © 2025 LLMQuant Team
# Navigation
nav:
- 简介:
- 关于项目: index.md
- 如何参与: contribute.md
- 常见问题: FAQ.md
- 关于LLMQuant: about.md
- 社区其他项目: other.md
- 加入我们: join.md
- 基本概念:
- 知识框架: basic/index.md
- 金融术语:
- 概述: basic/finance/index.md
- 市场与交易:
- 一级市场: basic/finance/一级市场_Primary Market.md
- 二级市场: basic/finance/二级市场_Secondary Market.md
- 债券市场: basic/finance/债券市场_Bond Market.md
- 外汇市场: basic/finance/外汇市场_Foreign Exchange.md
- 金融工具:
- 股权: basic/finance/股权_Equity.md
- 期货: basic/finance/期货_Futures.md
- 期权:
- 二元期权: basic/finance/二元期权_Binary Option.md
- 卖出期权: basic/finance/卖出期权_Put Option.md
- VIX期权: basic/finance/VIX期权_VIX Option.md
- 债券:
- 债券: basic/finance/债券_Bond.md
- 国债: basic/finance/国债_Treasury Bond.md
- 可转换债券: basic/finance/可转换债券_Convertible Bond.md
- 交易机制:
- T+1: basic/finance/T+1_T+1.md
- 保证金: basic/finance/保证金_Margin.md
- 保证金交易: basic/finance/保证金交易_Buying on Margin.md
- 交易商: basic/finance/交易商_Dealer.md
- 投资理论:
- 价值投资: basic/finance/价值投资_Value Investing.md
- 被动投资: basic/finance/被动投资_Passive Investing.md
- 多因子模型: basic/finance/多因子模型_Multi-Factor Model.md
- 有效市场假说: basic/finance/有效市场假说_Efficient Market Hypothesis.md
- 概率基础:
- 概述: basic/prob/index.md
- 基础理论:
- 条件概率: basic/prob/条件概率_Conditional Probability.md
- 联合概率: basic/prob/联合概率_Joint Probability.md
- 贝叶斯定理: basic/prob/贝叶斯定理_Baye's Theorem.md
- 概率分布:
- 概率分布: basic/prob/概率分布_Probability Distribution.md
- 正态分布: basic/prob/正态分布_Normal Distribution.md
- 重要定理:
- 大数法则: basic/prob/大数法则_Law of Large Numbers.md
- 应用:
- 蒙特卡罗模拟: basic/prob/蒙特卡罗模拟_Monte Carlo Simulation.md
- 统计基础:
- 概述: basic/stat/index.md
- 基本概念:
- 期望值: basic/stat/期望值_Expected Value.md
- 协方差: basic/stat/协方差_Covariance.md
- 相关系数: basic/stat/相关系数_Correlation Coefficient.md
- 统计检验:
- P值: basic/stat/P值_P-Test.md
- T检验: basic/stat/T检验_T-Test.md
- 假设检验: basic/stat/假设检验_Hypothesis Testing.md
- 统计显著性: basic/stat/统计显著性_Statistical Significance.md
- 回归分析:
- 回归分析: basic/stat/回归分析_Regression.md
- R平方: basic/stat/R平方_R-Squared.md
- 多元线性回归: basic/stat/多元线性回归_Multiple Linear Regression.md
- 最小二乘法: basic/stat/最小二乘法_Least Squares Method.md
- 量化术语:
- 概述: basic/quant/index.md
- 交易策略:
- 趋势交易: basic/quant/趋势交易_Trend Trading.md
- 动量投资: basic/quant/动量投资_Momentum Investing.md
- 因子投资: basic/quant/因子投资_Factor Investing.md
- 高频交易: basic/quant/高频交易_High-Frequency Trading.md
- 期权策略:
- 德尔塔对冲: basic/quant/德尔塔对冲_Delta Hedging.md
- 伽马对冲: basic/quant/伽马对冲_Gamma Hedging.md
- 波动率套利: basic/quant/波动率套利_Volatility Arbitrage.md
- 技术指标:
- 移动平均线: basic/quant/移动平均线_Moving Average.md
- 简单移动平均线: basic/quant/简单移动平均线_Simple Moving Average.md
- 指数移动平均线: basic/quant/指数移动平均线_Exponential Moving Average.md
- 相对强弱指数: basic/quant/相对强弱指数_Relative Strength Index.md
- 经典模型:
- 资本资产定价模型: basic/quant/资本资产定价模型_Capital Asset Pricing Model.md
- Fama-French三因子模型: basic/quant/Fama-French三因子模型_Fama and French Three Factor Model.md
- 入门教程:
- 量化交易员带你入门:
- 为什么有些交易策略能带来盈利?: start/quant_trader/为什么有些交易策略能带来盈利.md
- 如何打造“好用”的交易策略: start/quant_trader/如何打造“好用”的交易策略.md
- 如何如何划分交易风格?: start/quant_trader/如何如何划分交易风格.md
- 必懂概念入门:
- 夏普比率: start/sharpe.md
- 期权定价: start/option.md
- 波动率: start/volatility.md
- 资产组合理论: start/mpt-markowitz.md
- 策略类型入门:
- 一文解密量化策略类型: start/strategy-type.md
- 多策略对冲基金入门: start/multi-strategy.md
- 事件驱动型: start/event-driven.md
- 宏观对冲基金入门: start/macro-hedge.md
- 实用行业入门:
- 机构策略九个热门策略: start/nine-strategies.md
- Point72投资策略: start/point72-idea.md
- 量化前沿:
- 简介: advanced/index.md
- 量化最新研究:
- 最新研究目录: advanced/最新技术/index.md
- 业内使用案例:
- 对冲基金巨头布局AI量化: advanced/最新技术/ChatGPT-Balyasny.md
- 前沿技术:
- 使用大语言模型揭露企业年报中掩盖的坏消息: advanced/最新技术/llm-report.md
- RD-Agent 革新金融量化交易的AI自动化工具: advanced/最新技术/rd-agent.md
- 量化投资专家的投资组合管理指南: advanced/最新技术/Advanced Portfolio Management.md
- 研报精选:
- 研报精选目录: advanced/研报精选/index.md
- 多因子系列:
- 中信多因子: advanced/研报精选/中信-多因子系列/index.md
- 华泰多因子: advanced/研报精选/华泰-多因子系列/index.md
- 国盛多因子: advanced/研报精选/国盛-多因子系列/index.md
- 广发多因子: advanced/研报精选/广发-多因子系列/index.md
- 方正财通星火: advanced/研报精选/方正财通-星火系列/index.md
- 海通选股因子: advanced/研报精选/海通-选股因子系列/index.md
- 渤海多因子: advanced/研报精选/渤海-多因子系列/index.md
- 人工智能系列:
- 华泰人工智能: advanced/研报精选/华泰-人工智能系列/index.md
- 广发深度学习: advanced/研报精选/广发-深度学习系列/index.md
- 高频交易系列:
- A股高频研报: advanced/研报精选/a股高频研报/index.md
- 广发高频因子: advanced/研报精选/广发-高频因子系列/index.md
- 其他系列:
- 财通中信逐鹿: advanced/研报精选/财通中信-逐鹿系列/index.md
- 量化百宝箱:
- 简介: repo/quant_learn.md
- 量化学习资源:
- 开源工具库:
- 回测与实盘交易: repo/quant_learn/#backtesting-and-live-trading
- 事件驱动框架: repo/quant_learn/#general---event-driven-frameworks
- 向量化框架: repo/quant_learn/#general---vector-based-frameworks
- 加密货币框架: repo/quant_learn/#cryptocurrencies
- 交易机器人: repo/quant_learn/#trading-bots
- 分析工具:
- 技术指标: repo/quant_learn/#indicators
- 指标计算: repo/quant_learn/#metrics-computation
- 优化工具: repo/quant_learn/#optimization
- 定价工具: repo/quant_learn/#pricing
- 风险分析: repo/quant_learn/#risk
- 券商接口: repo/quant_learn/#broker-apis
- 数据工具:
- 数据源: repo/quant_learn/#data-sources
- 通用数据: repo/quant_learn/#general
- 加密货币数据: repo/quant_learn/#cryptocurrencies-1
- 数据科学: repo/quant_learn/#data-science
- 数据库: repo/quant_learn/#databases
- 图计算: repo/quant_learn/#graph-computation
- 高级分析:
- 机器学习: repo/quant_learn/#machine-learning
- 时间序列: repo/quant_learn/#timeseries-analysis
- 数据可视化: repo/quant_learn/#visualization
- 交易策略:
- 多资产策略: repo/quant_learn/#bonds-commodities-currencies-equities
- 债券商品股票REIT: repo/quant_learn/#bonds-commodities-equities-reits
- 债券与股票: repo/quant_learn/#bonds-equities
- 债券股票REIT: repo/quant_learn/#bonds-equities-reits
- 商品策略: repo/quant_learn/#commodities
- 加密货币策略: repo/quant_learn/#cryptos
- 外汇策略: repo/quant_learn/#currencies
- 股票策略: repo/quant_learn/#equities
- 学习资源:
- 视频资源: repo/quant_learn/#videos
- 博客资源: repo/quant_learn/#blogs
- 课程资源: repo/quant_learn/#courses
- 不同编程语言的量化框架:
- Python: repo/quant_repo/#python
- R: repo/quant_repo/#r
- Matlab: repo/quant_repo/#matlab
- Julia: repo/quant_repo/#julia
- Java: repo/quant_repo/#java
- JavaScript: repo/quant_repo/#javascript
- Haskell: repo/quant_repo/#haskell
- Scala: repo/quant_repo/#scala
- Ruby: repo/quant_repo/#ruby
- Elixir/Erlang: repo/quant_repo/#elixirerlang
- Golang: repo/quant_repo/#golang
- C++: repo/quant_repo/#cpp
- C#: repo/quant_repo/#csharp
- Rust: repo/quant_repo/#rust
- 框架: repo/quant_repo/#frameworks
- 研究成果复现: repo/reproduce.md
- 趋势型: repo/trend-following.md
- 统计套利型: repo/stat-arb.md
- AI+量化:
- 简介: ai/index.md
- 量化与人工智能结合:
- TradingAgents 多智能体LLM金融交易框架: ai/aiquant/TradingAgents.md
- InvestorBench 面向LLM金融决策任务的Benchmark: ai/aiquant/InvestorBench.md
- 2025年AI量化论文优选41篇: ai/2025-ai-paper.md
- AI量化交易基础: ai/ai-quant.md
- ChatGPT量化实战: ai/ChatGPT-quant.md
- ChatGPT选股策略: ai/ChatGPT-o1.md
- 论文速读与复现: ai/chat-paper.md
- 人工智能前沿:
- Transformer架构详解: ai/llm/Transformer.md
- DiffusionModel概述: ai/llm/Diffusion Models.md
- VQVAE模型概述: ai/llm/VQVAE.md
- 量化图书馆:
- Overview: library/overview.md
- 书籍:
- 人工智能:
- AI与机器学习:
- AI for Finance: library/book/AI for Finance/index.md
- Artificial Intelligence in Finance: library/book/Artificial Intelligence in Finance_ A Python-Based Guide/index.md
- Deep Learning for Finance: library/book/Deep Learning for Finance/index.md
- Machine Learning for Finance: library/book/Machine Learning for Finance/index.md
- Machine Learning in Finance: library/book/Machine Learning in Finance_ From Theory to Practice/index.md
- Financial Machine Learning: library/book/Financial Machine Learning/index.md
- Hands-On AI for Banking: library/book/Hands-On Artificial Intelligence for Banking/index.md
- 前沿技术应用:
- 主动投资组合管理新发展: library/book/前沿专题/Advances in Active Portfolio Management/index.md
- 算法交易方法: library/book/前沿专题/Algorithmic Trading Methods/index.md
- 算法与高频交易: library/book/前沿专题/Algorithmic and High-Frequency Trading/index.md
- 计算智能应用: library/book/前沿专题/Applications of computational intelligence in data-driven trading/index.md
- 机器学习资产定价: library/book/前沿专题/Empirical Asset Pricing via Machine Learning/index.md
- 金融科技案例: library/book/前沿专题/Financial Technology_ Case Studies/index.md
- 资产管理机器学习: library/book/前沿专题/Machine Learning for Asset Managers/index.md
- 资产定价机器学习: library/book/前沿专题/Machine Learning in Asset Pricing/index.md
- 金融机器学习实践: library/book/前沿专题/Machine Learning in Finance/index.md
- 金融机器学习进阶: library/book/前沿专题/Marcos López de Prado - Advances in Financial Machine Learning/index.md
- 量子金融: library/book/前沿专题/Quantum Finance/index.md
- 系统化交易: library/book/前沿专题/Robert Carver - Systematic Trading/index.md
- 另类数据指南: library/book/前沿专题/The Book of Alternative Data/index.md
- 量子机器学习: library/book/Quantum Machine Learning and Optimisation in Finance/index.md
- 概率机器学习: library/book/Probabilistic Machine Learning for Finance and Investing/index.md
- 量化交易:
- 算法交易:
- 算法与高频交易: library/book/algorithmic-and-high-frequency-trading-pdf-free/index.md
- 高频交易系统开发: library/book/Developing High Frequency Trading Systems/index.md
- Python金融交易实战: library/book/Hands-On Financial Trading with Python/index.md
- 算法交易机器学习: library/book/Machine Learning for Algorithmic Trading/index.md
- Python算法交易: library/book/Python for Algorithmic Trading/index.md
- 策略研究:
- 101个因子公式: library/book/量化交易/101 Formulaic Alphas - arXiv.org/index.md
- 151个交易策略: library/book/量化交易/151 Trading Strategies/index.md
- 期货市场指南: library/book/量化交易/A complete guide to the futures market/index.md
- 主动投资组合管理: library/book/量化交易/Active Portfolio Management/index.md
- 算法交易策略: library/book/量化交易/Algorithmic Trading_ Winning Strategies/index.md
- 行为金融: library/book/量化交易/BetaPlus_Behavioral_Finance/index.md
- 盈利因子: library/book/量化交易/BetaPlus_Profitability_Factor/index.md
- 时间序列分析: library/book/量化交易/BetaPlus_Time_Series_Analysis/index.md
- 趋势跟踪: library/book/量化交易/BetaPlus_Trend_Following/index.md
- Alpha挖掘: library/book/量化交易/Finding Alphas/index.md
- 高频交易实践: library/book/量化交易/High-frequency trading/index.md
- 金融优化方法: library/book/量化交易/Optimization Methods in Finance/index.md
- 量化股票投资: library/book/量化交易/Quantitative Equity Portfolio Management/index.md
- 量化投资分析: library/book/量化交易/Quantitative Investment Analysis Workbook/index.md
- 获取Alpha策略: library/book/量化交易/Quantitative Strategies for Achieving Alpha/index.md
- 量化交易系统: library/book/量化交易/Quantitative Trading/index.md
- 统计套利: library/book/量化交易/Statistical Arbitrage/index.md
- 波动率交易: library/book/量化交易/Volatility Trading/index.md
- 基础理论:
- 数学与统计:
- 蒙特卡洛方法: library/book/Monte Carlo Methods in Financial Engineering/index.md
- 金融优化方法: library/book/Optimization Methods in Finance(第二版)/index.md
- 金融大数据建模: library/book/Stochastic Modelling of Big Data in Finance/index.md
- 金融数学:
- 金融工程线性代数: library/book/金融数学/A Linear Algebra Primer for Financial Engineering/index.md
- 随机模型与风险: library/book/金融数学/Advanced Stochastic Models, Risk Assessment, and Portfolio Optimization/index.md
- 金融衍生品数学: library/book/金融数学/An Introduction to the Mathematics of Financial Derivatives/index.md
- 风险与资产配置: library/book/金融数学/Attilio Meucci - Risk and Asset Allocation/index.md
- 金融工程数学入门: library/book/金融数学/Dan Stefanica - A Primer for the Mathematics of Financial Engineering/index.md
- 动态资产定价: library/book/金融数学/Darrell Duffie - Dynamic asset pricing theory/index.md
- 实证资产定价: library/book/金融数学/Empirical Dynamic Asset Pricing/index.md
- 市场微观结构: library/book/金融数学/Maureen O'Hara - Market Microstructure Theory/index.md
- 金融数学方法: library/book/金融数学/Methods of Mathematical Finance/index.md
- 量化金融导论: library/book/金融数学/Paul Wilmott - Paul Wilmott introduces quantitative finance/index.md
- 量化风险管理: library/book/金融数学/Quantitative risk management/index.md
- 波动率微笑: library/book/金融数学/The Volatility Smile/index.md
- 工程实现:
- 编程实现:
- Python金融理论: library/book/Financial Theory with Python/index.md
- R量化金融: library/book/Learning Quantitative Finance with R/index.md
- Python金融进阶: library/book/Mastering Python for Finance/index.md
- Python金融手册: library/book/Python for Finance Cookbook/index.md
- 风险管理:
- 风险管理机器学习: library/book/Machine Learning for Financial Risk Management with Python/index.md
- 金融信号处理: library/book/Financial Signal Processing and Machine Learning/index.md
- 面试资源:
- 量化面试指南:
- 量化金融常见问题: library/book/量化面试/Paul P. Wilmott - Frequently Asked Questions in Quantitative Finance/index.md
- Quant绿皮书精讲: library/book/量化面试/Quant绿皮书精讲60题_by野荷马/index.md
- 华尔街面试题: library/book/量化面试/Timothy Falcon Crack - Heard on the Street/index.md
- 量化面试红宝书: library/book/量化面试/红宝书Quant Job Interview Questions And Answers/index.md
- 量化面试实践指南: library/book/量化面试/绿皮书A Practical Guide to Quantitative Finance Interviews/index.md
- 150个高频题: library/book/量化面试/黄皮书150 Most Frequently Asked Questions on Quant Interviews/index.md
- 中文精选:
- 金融时间序列分析: library/book/【2022新书】机器学习在金融时间序列分析与预测中的应用,385页pdf/index.md
- 金融数据科学: library/book/【开放书】经济与金融数据科学/index.md
- 量化绿皮书: library/book/量化绿皮书/index.md
- 2024独家金融干货包: library/book/2024独家金融干货包/index.md
- Reference: library/reference.md
- 行业内幕:
- 简介: industry/overview.md
- 公司简介:
- 买方公司: industry/buy-side.md
- 卖方公司: industry/sell-side.md
- 大师人物:
- 西蒙斯: industry/master/Jim-Simons.md
- 2025年最值得关注的10家对冲基金: industry/2025-10-fund.md
- 大奖章基金:文艺复兴科技公司里独一无二的赚钱机器: industry/Medallion.md
- Quadrature Capital:你从未听过的神秘自营交易公司: industry/Quadrature-Capital.md
- 规模越大代表业绩越好?论对冲基金规模与其表现的关系: industry/size-fund.md
- 求职专区:
- 全球量化薪资大揭秘: job/quant-salary.md
- 一文全解析对冲基金的职业路径: job/quant-job.md
- 揭秘量化分析师的日常: job/quant-daily.md
- 探秘Jane Street实习的亲身经历: job/Jane-Street-intern.md
- 剑桥与北大内部培训项目: job/cambridge-and-pku.md
- 独家Chatbot:
- Overview: chatbot/overview.md
# Configuration
theme:
name: material
logo: asset/quant-wiki.svg # logo 图标
favicon: asset/quant-wiki.svg # 网页标签图标
icon:
repo: fontawesome/brands/github
# font:
# text: LXGW WenKai Mono TC
# code: Roboto Mono
language: zh
features:
- navigation.instant
- navigation.tabs
- navigation.sections
- navigation.top
- search.highlight
- search.share
- search.suggest
palette:
- scheme: default
primary: indigo
accent: indigo
toggle:
icon: material/brightness-7
name: Switch to dark mode
- scheme: slate
primary: indigo
accent: indigo
toggle:
icon: material/brightness-4
name: Switch to light mode
# Extensions
markdown_extensions:
- admonition
- codehilite:
guess_lang: false
- footnotes
- meta
- toc:
permalink: true
- pymdownx.arithmatex:
generic: true
# https://facelessuser.github.io/pymdown-extensions/extensions/betterem/
- pymdownx.betterem
- pymdownx.details
- pymdownx.emoji:
emoji_index: !!python/name:material.extensions.emoji.twemoji
emoji_generator: !!python/name:material.extensions.emoji.to_svg
- pymdownx.highlight
- pymdownx.superfences
- pymdownx.tasklist:
custom_checkbox: true
# Plugins
plugins:
- search
- minify:
minify_html: true
minify_js: true
minify_css: true
htmlmin_opts:
remove_comments: true
# - git-revision-date-localized:
# type: datetime
# Extra CSS and JavaScript
extra_css:
- stylesheets/extra.css
- https://cdn.jsdelivr.net/npm/[email protected]/style.css
extra_javascript:
- javascripts/mathjax.js
- https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js
extra:
social: # This is the social links section.
# - icon: fontawesome/brands/github # Use the Font Awesome icon name.
# link: https://github.com/your-username # Replace with your GitHub username.
# name: Visit me on GitHub # 用于 accessibility 的名字
- icon: fontawesome/brands/linkedin
link: https://www.linkedin.com/company/llmquant/
- icon: fontawesome/solid/globe
link: https://llmquant.com