-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathpyproject.toml
94 lines (90 loc) · 2.39 KB
/
pyproject.toml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
# Copyright 2021-2024 Lawrence Livermore National Security, LLC and other
# MuyGPyS Project Developers. See the top-level COPYRIGHT file for details.
#
# SPDX-License-Identifier: MIT
[build-system]
requires = ["setuptools >= 68.0.0", "wheel"]
build-backend = "setuptools.build_meta"
[project]
name = "muygpys"
version = "0.9.0"
authors = [
{name = "Min W. Priest" },
]
description = "Scalable Approximate Gaussian Process using Sparse Kriging"
readme = "README.md"
license = { file = "LICENSE-MIT" }
requires-python = ">=3.8"
classifiers = [
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
"Programming Language :: Python :: 3.12",
"License :: OSI Approved :: MIT License",
"Operating System :: MacOS",
"Operating System :: POSIX :: Linux",
"Topic :: Software Development",
"Topic :: Software Development :: Libraries",
"Topic :: Software Development :: Libraries :: Python Modules",
"Topic :: Scientific/Engineering",
"Topic :: Scientific/Engineering :: Mathematics",
"Intended Audience :: Science/Research",
"Intended Audience :: Developers",
"Intended Audience :: Education",
"Development Status :: 3 - Alpha",
]
dependencies = [
"numpy>=1.18.5",
"scipy>=1.9.0",
"scikit-learn>=0.23.2",
"bayesian-optimization>=1.4.2",
]
[project.urls]
homepage = "https://github.com/LLNL/MuyGPyS"
source = "https://github.com/LLNL/MuyGPyS"
download = "https://pypi.org/project/muygpys"
documentation = "https://muygpys.readthedocs.io"
tracker = "https://github.com/LLNL/MuyGPyS/issues"
[project.optional-dependencies]
tests = [
"absl-py>=0.13.0",
"matplotlib>=3.2.1",
"pandas>=2.2.2",
]
dev = [
"black>=21.1.0",
"build>=0.7.0",
"mypy>=0.910",
"twine>=3.7.1",
"h5py>=3.7.0",
]
docs = [
"sphinx==6.2.1",
"sphinx-rtd-theme==1.2.2",
"sphinx-autodoc-typehints==1.22",
"matplotlib>=3.2.1",
"nbsphinx==0.9.2",
"pandas>=2.2.2",
"pandoc==2.3.0",
"pandocfilters==1.5.0",
"ipython==7.30.1",
"ipykernel==6.6.0",
"torchvision>=0.14.1",
"cblind>=2.3.1",
]
hnswlib = [
"pybind11>=2.5.0",
"hnswlib>=0.6.0",
]
jax_cpu = [
"jax[cpu]>=0.2.26",
"tensorflow-probability[jax]>=0.16.0",
]
mpi = [
"mpi4py==3.1.3",
]
torch = [
"torch>=1.13.0",
"torchvision>=0.14.1",
]