-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtf_analysis_power_spectrum.m
72 lines (59 loc) · 2.43 KB
/
tf_analysis_power_spectrum.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
function [power,f_vector] = tf_analysis_power_spectrum(data, ...
f_range, n_freq, tf_method, wav_seconds, win_seconds, ...
n_wins, fs_data, fs_power)
% Performs time-frequency analysis of the signals in 'data'
% Extracts the power-spectrum of each signal in 'data', using
% the method 'tf_method'
%
% INPUTS:
%
% data - Input signals
% f_range - Frequency range for the TF-decomposition
% n_freq - Number of frequency bins for the TF-decomposition
% tf_method - Method to be used in the TF-decomposition
% wav_seconds - Size of the Morlet Wavelet kernel (seconds)
% win_seconds - Size of the Welch sliding window (seconds)
% fs_data - Sampling frequency of the input data, 'data'
% fs_power - Sampling frequency of the output data, 'power'
%
% OUTPUTS:
%
% power - Output power time-series of each input signal
% f_vector - Frequency vector used in thr tf-decomposition
%
% Ensure that data is a real 2D matrix
if ~ismatrix(data) || ~isreal(data)
error('data is not a real 2D matrix');
end
% Ensure that the first dimension
% spans time-points
if size(data,1) < size(data,2)
data = squeeze(data');
end
% Number of time-points
n_pnts = size(data, 1);
% Obtain number of time points of the output
n_pnts_power = round((n_pnts - 1)*(fs_power/fs_data) + 1);
switch tf_method
% === Morlet Wavelet ===
case 'wavelet'
% Extract the tf power spectrum of the current
% channel, using Morlet wavelet decomposition
[~ , f_vector, ~, power] = tf_power_spectrum_wavelet(data, ...
f_range, n_freq, wav_seconds, fs_data, 1);
% === Welch's Method ===
case 'welch'
% Extract the tf power spectrum of the current
% channel, using the Welch method
% (the cross-spectrum of one signal with itself
% is its power spectral density)
[f_vector, power] = ...
tf_cross_spectrum_welch(data, data, f_range, n_freq, ...
n_wins, win_seconds, fs_data, fs_power, 0);
% Padd the tf power-spectrum to match the begining and
% end of the input data
padd_size = (n_pnts_power - size(power, 1)) / 2;
power = padarray(power, [padd_size 0 0], ...
'replicate','both');
end
end