forked from varocaraballo/graph_partition_clustering
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
134 lines (119 loc) · 5.91 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# -*- coding: utf-8 -*-
import numpy as np
import collections
from common import binarysearch
from common import bottom_up
import fixed_k
import estimate_k
def getclustering(sm: list, k: int = None)->(float, list):
"""Given an NxN normalized similarity matrix computes a clustering of the elements {0,...,N-1}.
Parameters:
----------
sm : list of lists of floats
NxN (upper triangular) normalized similarity matrix, i.e.: 0 < sm[i][j] < 1 is the similarity between the elements i and j. If sm[i][j] --> 0 then i and j are very different. If sm[i][j] --> 1 then i and j are very similar.
k : int, optional
Number of required clusters, 2<k<=N.
Returns:
--------
q : float
Quality measure of the optimum clustering
C : list
C is a list of length N with values from 0 to k-1 representing the k clusters. If C[i]=C[j]=l it means that the elements i and j are in the same cluster with label l.
"""
from scipy.sparse import csr_matrix, lil_matrix
from scipy.sparse.csgraph import minimum_spanning_tree
n = len(sm)
M = csr_matrix(sm)
s = -minimum_spanning_tree(-M)
parent = [None]*n
child_tree = [collections.deque() for i in range(n)]
w_set = set(s.data)
w_set.add(0)
w_set.add(1)
weights = sorted([i for i in w_set]) # weights
edges = lil_matrix(np.zeros((n,n)), dtype=int) #edges
q = collections.deque([0])
marks = [0]*n
while len(q)>0:
p = q.popleft()
marks[p] = 1
for i in range(n):
e_weight = s[min(i,p), max(i,p)]
if e_weight > 0 and marks[i] == 0:
edges[i,p] = binarysearch(weights, e_weight)
edges[p,i] = edges[i,p]
child_tree[p].append(i)
parent[i] = p
q.append(i)
edges = csr_matrix(edges)
child_tree = [[i for i in l] for l in child_tree]
if k is not None:
trees_tables = {}
trees_l_mu = {}
for v in bottom_up(child_tree):
if len(child_tree[v]) == 0:
trees_tables[v] = {(1,len(weights)-1):(0,0, None, None)} # (l,mu):(M, b, depends on tree_key, key (l',mu') of the entry on which it depends)
trees_l_mu[v] = {1:[len(weights)-1]}
else:
s_table = s_l_mu = None
for i in range(len(child_tree[v])):
_q_table, _q_l_mu = fixed_k.up_to_parent(trees_tables[child_tree[v][i]], trees_l_mu[child_tree[v][i]], child_tree[v][i], weights, edges[v,child_tree[v][i]], k)
if i == 0:
s_table, s_l_mu = _q_table, _q_l_mu
else:
trees_tables[(v,0,i)], trees_l_mu[(v,0,i)] = s_table, s_l_mu
trees_tables[(v,i,1)], trees_l_mu[(v,i,1)] = _q_table, _q_l_mu
s_table, s_l_mu = fixed_k.add_child(s_table, s_l_mu, (v,0,i), _q_table, _q_l_mu, (v,i,1), weights, edges[v,child_tree[v][i]], k)
trees_tables[v], trees_l_mu[v] = s_table, s_l_mu
root_table = trees_tables[0]
root_l_mu = trees_l_mu[0]
best = float('inf')
best_key = None
for mu in root_l_mu[k]:
if root_table[(k,mu)][1]<best:
best = root_table[(k,mu)][1]
best_key = (k,mu)
return best, retrieve_clusters(trees_tables, 0, best_key, len(weights)-1, 0, False, [0]*n)
else:
trees_tables = {}
trees_l_mu = {}
for v in bottom_up(child_tree):
if len(child_tree[v]) == 0:
trees_tables[v] = {(0,len(weights)-1):(0,0, None, None)} # (l,mu):(M, b, depends on tree_key, key (l',mu') of the entry on which it depends)
trees_l_mu[v] = {0:[len(weights)-1]}
else:
s_table = s_l_mu = None
for i in range(len(child_tree[v])):
_q_table, _q_l_mu = estimate_k.up_to_parent(trees_tables[child_tree[v][i]], trees_l_mu[child_tree[v][i]], child_tree[v][i], weights, edges[v,child_tree[v][i]])
if i == 0:
s_table, s_l_mu = _q_table, _q_l_mu
else:
trees_tables[(v,0,i)], trees_l_mu[(v,0,i)] = s_table, s_l_mu
trees_tables[(v,i,1)], trees_l_mu[(v,i,1)] = _q_table, _q_l_mu
s_table, s_l_mu = estimate_k.add_child(s_table, s_l_mu, (v,0,i), _q_table, _q_l_mu, (v,i,1), weights, edges[v,child_tree[v][i]])
trees_tables[v], trees_l_mu[v] = s_table, s_l_mu
root_table = trees_tables[0]
root_l_mu = trees_l_mu[0]
best = float('inf')
best_key = None
for mu in root_l_mu[1]:
if root_table[(1,mu)][1]<best:
best = root_table[(1,mu)][1]
best_key = (1,mu)
return best, retrieve_clusters(trees_tables, 0, best_key, len(weights)-1, 0, False, [0]*n)
def retrieve_clusters(trees_tables: dict, t_key: int or tuple, p_key: tuple, edge_1: int, last_cluster: int, create_new_one: bool, labeling: list):
if create_new_one:
last_cluster += 1
if type(t_key) is int:
labeling[t_key] = last_cluster
tpl = trees_tables[t_key][p_key]
if tpl[2] is not None:
if tpl[2][0] == 1:
if p_key[1] == edge_1:
retrieve_clusters(trees_tables, tpl[2][1], tpl[3], edge_1, last_cluster, True, labeling)
else:
retrieve_clusters(trees_tables, tpl[2][1], tpl[3], edge_1, last_cluster, False, labeling)
else:
retrieve_clusters(trees_tables, tpl[2][1], tpl[3][0], edge_1, last_cluster, False, labeling)
retrieve_clusters(trees_tables, tpl[2][2], tpl[3][1], edge_1, last_cluster, False, labeling)
return labeling