-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_single_multi.py
598 lines (487 loc) · 26.8 KB
/
main_single_multi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
# -*- encoding:utf-8 -*-
import os
import random
import math
import torch
import pickle
import argparse
import numpy as np
from utils.loader_data import *
# from models.ecaggcn_no_dcn import ECClassifier
from sklearn import metrics
import torch.nn as nn
import time
# from src.model import Networks
from src.model import Networks
###尝试采用梯度裁剪and将预训练部分和正式训练部分分别用两个优化器来做
class Model:
def __init__(self, opt, idx):
self.opt = opt
self.embedding = load_embedding(opt.embedding_path)
self.emo_embedding = load_emo_embedding(opt.emo_embedding_path)
self.embedding_pos = load_pos_embedding(opt.embedding_dim_pos)
self.split_size = math.ceil(opt.data_size / opt.n_split)
self.global_f1 = 0
# self.train, self.test = load_data(self.split_size, idx, opt.data_size) #意味着只能从一个角度上训练,应该换几种姿势轮着训练
if opt.dataset == 'EC':
self.train, self.test = load_percent_train(opt.per, self.split_size, idx, opt.data_size)
elif opt.dataset == 'EC_en':
self.train, self.test = load_data_en()
else:
print('DATASET NOT EXIST')
# self.train, self.test = load_data(self.split_size, idx, opt.data_size)
self.sub_model = opt.model_class(self.embedding, self.opt).to(opt.device)
with open(opt.emotion_model, 'rb') as fr:
self.emotion_model = pickle.load(fr)
def _reset_params(self):
for p in self.sub_model.parameters():
if p.requires_grad:
if len(p.shape) > 1:
self.opt.initializer(p)
else:
stdv = 1. / math.sqrt(p.shape[0])
torch.nn.init.uniform_(p, a=-stdv, b=stdv)
def _print_args(self):
n_trainable_params, n_nontrainable_params, model_params = 0, 0, 0
for p in self.sub_model.parameters():
n_params = torch.prod(torch.tensor(p.shape)).item()
model_params += n_params
if p.requires_grad:
n_trainable_params += n_params
else:
n_nontrainable_params += n_params
print('n_trainable_params: {0}, n_nontrainable_params: {1}, model_params: {2}'.format(n_trainable_params, n_nontrainable_params, model_params))
print('> training arguments:')
for arg in vars(self.opt):
print('>>> {0}: {1}'.format(arg, getattr(self.opt, arg)))
def _train(self, pre_optimizer, train_optimizer, f_out):
ec_max_test_pre = 0
ec_max_test_rec = 0
ec_max_test_f1 = 0
e_max_test_pre = 0
e_max_test_rec = 0
e_max_test_f1 = 0
c_max_test_pre = 0
c_max_test_rec = 0
c_max_test_f1 = 0
m_ec_max_test_pre = 0
m_ec_max_test_rec = 0
m_ec_max_test_f1 = 0
m_e_max_test_pre = 0
m_e_max_test_rec = 0
m_e_max_test_f1 = 0
m_c_max_test_pre = 0
m_c_max_test_rec = 0
m_c_max_test_f1 = 0
global_step = 0
continue_not_increase = 0
# for epoch in range(self.opt.pre_num_epoch):
# print('pre_training' + '>' * 100)
# print('epoch: ', epoch)
#
# for train in get_train_batch_data(self.train, self.opt.batch_size, self.opt.keep_prob1,
# self.opt.keep_prob2):
# global_step += 1
# self.sub_model.train()
# #pre_optimizer.zero_grad()
#
# inputs = [train[col].to(self.opt.device) for col in self.opt.inputs_cols]
# topk_index, emo_pred, pair_pred, pair_index, pair_no_emo_pred, \
# pair_no_emotion_oriented_index, emo_cau_pos = self.sub_model(inputs)
#
# doc_len_batch = emo_pred.size(1)
# y_mask = train['y_mask'][:, :doc_len_batch]
# emo_targets = train['y_emotion'].to(self.opt.device)[:, :doc_len_batch]
#
# emo_targets = torch.argmax(emo_targets, dim=2).float()
#
#
# ##在情感上设置下mask
# y_mask = y_mask.bool().to(self.opt.device)
# emo_pred = emo_pred.masked_select(y_mask)
# emo_targets = emo_targets.masked_select(y_mask)
#
# ###通过pos_weight来调整下准确率和召回率
# pos_weight = torch.where(emo_targets==1, 1.5, 1.0)
# criterion = nn.BCEWithLogitsLoss(reduction='mean',pos_weight=pos_weight)
#
# emotion_loss = criterion(emo_pred, emo_targets)
# doc_couple = train['doc_couple']
# couples_true, couples_mask = \
# self.sub_model.output_util(emo_cau_pos, doc_couple, y_mask)
# loss_no_emo_pair, no_emo_labels = self.sub_model.loss_pair(pair_no_emo_pred, couples_true,
# pair_no_emotion_oriented_index,
# couples_mask)
# loss1 = emotion_loss + loss_no_emo_pair
# # loss1 = loss_no_emo_pair
#
#
# if global_step % 2 == 0:
#
# loss1.backward()
# pre_optimizer.step()
for epoch in range(self.opt.num_epoch):
print('>' * 100)
print('epoch: ', epoch)
n_correct, n_total = 0, 0
increase_flag = False
for train in get_train_batch_data(self.train, self.opt.batch_size, self.opt.keep_prob1, self.opt.keep_prob2):
global_step += 1
self.sub_model.train()
train_optimizer.zero_grad()
inputs = [train[col].to(self.opt.device) for col in self.opt.inputs_cols]
topk_index, emo_pred, pair_pred, pair_index, pair_no_emo_pred, \
pair_no_emotion_oriented_index, emo_cau_pos = self.sub_model(inputs)
doc_len_batch = emo_pred.size(1)
doc_id_batch = train['doc_id']
emo_targets = train['y_emotion'].to(self.opt.device)[:, :doc_len_batch]
doc_couple = train['doc_couple']
emo_targets = torch.argmax(emo_targets, dim=2).float()
y_mask = train['y_mask'][:, :doc_len_batch]
y_mask = y_mask.bool().to(self.opt.device)
emo_pred = emo_pred.masked_select(y_mask)
emo_targets = emo_targets.masked_select(y_mask)
###通过pos_weight来调整下准确率和召回率
pos_weight = torch.where(emo_targets == 1, 1.5, 1.0)
criterion = nn.BCEWithLogitsLoss(reduction='mean', pos_weight=pos_weight)
emotion_loss = criterion(emo_pred, emo_targets)
###分别计算两个通道下的loss损失
###面向情感对的损失
couples_true, couples_mask = \
self.sub_model.output_util(emo_cau_pos, doc_couple, y_mask)
loss_emo_pair, emo_labels = self.sub_model.loss_pair(pair_pred, couples_true, pair_index, couples_mask)
###非面向情感对的损失
loss_no_emo_pair, no_emo_labels = self.sub_model.loss_pair(pair_no_emo_pred, couples_true, pair_no_emotion_oriented_index, couples_mask)
loss = loss_emo_pair + loss_no_emo_pair + emotion_loss
# loss = loss_emo_pair + loss_no_emo_pair
#loss = emotion_loss + loss_emo_pair
loss.backward()
##梯度裁剪部分
# nn.utils.clip_grad_norm(self.sub_model.parameters(), max_norm=20, norm_type=2)
train_optimizer.step()
if global_step % self.opt.log_step == 0:
train_optimizer.step()
print('Train: loss:{:.4f}\n'.format(loss))
f_out.write('Train: loss:{:.4f}\n'.format(loss))
emo_cau_pair = self._evaluate_prf_binary(doc_id_batch, pair_pred, pair_index)
ec_train, e_train, c_train = self.eval_func(list(train['doc_couple']), emo_cau_pair)
print('Train: emotion-caus-pair: P {:.4f} R {:.4f} F {:.4f}\n'.format(ec_train[0], ec_train[1], ec_train[2]))
print('Train: emotion: P {:.4f} R {:.4f} F {:.4f}\n'.format(e_train[0], e_train[1], e_train[2]))
print('Train: cause: P {:.4f} R {:.4f} F {:.4f}\n'.format(c_train[0], c_train[1], c_train[2]))
f_out.write('Train: emotion-caus-pair: P {:.4f} R {:.4f} F {:.4f}\n'.format(ec_train[0], ec_train[1], ec_train[2]))
f_out.write('Train: emotion: P {:.4f} R {:.4f} F {:.4f}\n'.format(e_train[0], e_train[1], e_train[2]))
f_out.write('Train: cause: P {:.4f} R {:.4f} F {:.4f}\n'.format(c_train[0], c_train[1], c_train[2]))
sin_ec, sin_e, sin_c, multi_ec, multi_e, multi_c = self._evaluate_acc_f1()
print('Single Test: emotion-caus-pair: P {:.4f} R {:.4f} F {:.4f}\n'.format(sin_ec[0], sin_ec[1], sin_ec[2]))
print('Single Test: emotion: P {:.4f} R {:.4f} F {:.4f}\n'.format(sin_e[0], sin_e[1], sin_e[2]))
print('Single Test: cause: P {:.4f} R {:.4f} F {:.4f}\n'.format(sin_c[0], sin_c[1], sin_c[2]))
f_out.write('Single Test: emotion-caus-pair: P {:.4f} R {:.4f} F {:.4f}\n'.format(sin_ec[0], sin_ec[1], sin_ec[2]))
f_out.write('Single Test: emotion: P {:.4f} R {:.4f} F {:.4f}\n'.format(sin_e[0], sin_e[1], sin_e[2]))
f_out.write('Single Test: cause: P {:.4f} R {:.4f} F {:.4f}\n'.format(sin_c[0], sin_c[1], sin_c[2]))
print('Multi Test: emotion-caus-pair: P {:.4f} R {:.4f} F {:.4f}\n'.format(multi_ec[0], multi_ec[1],
multi_ec[2]))
print('Multi Test: emotion: P {:.4f} R {:.4f} F {:.4f}\n'.format(multi_e[0], multi_e[1], multi_e[2]))
print('Multi Test: cause: P {:.4f} R {:.4f} F {:.4f}\n'.format(multi_c[0], multi_c[1], multi_c[2]))
f_out.write(
'Multi Test: emotion-caus-pair: P {:.4f} R {:.4f} F {:.4f}\n'.format(multi_ec[0], multi_ec[1],
multi_ec[2]))
f_out.write(
'Multi Test: emotion: P {:.4f} R {:.4f} F {:.4f}\n'.format(multi_e[0], multi_e[1], multi_e[2]))
f_out.write('Multi Test: cause: P {:.4f} R {:.4f} F {:.4f}\n'.format(multi_c[0], multi_c[1], multi_c[2]))
if sin_ec[2] > ec_max_test_f1:
ec_max_test_f1 = sin_ec[2]
ec_max_test_pre = sin_ec[0]
ec_max_test_rec = sin_ec[1]
if sin_e[2] > e_max_test_f1:
e_max_test_f1 = sin_e[2]
e_max_test_pre = sin_e[0]
e_max_test_rec = sin_e[1]
if sin_c[2] > c_max_test_f1:
c_max_test_f1 = sin_c[2]
c_max_test_pre = sin_c[0]
c_max_test_rec = sin_c[1]
if multi_ec[2] > m_ec_max_test_f1:
m_ec_max_test_f1 = multi_ec[2]
m_ec_max_test_pre = multi_ec[0]
m_ec_max_test_rec = multi_ec[1]
if multi_e[2] > m_e_max_test_f1:
m_e_max_test_f1 = multi_e[2]
m_e_max_test_pre = multi_e[0]
m_e_max_test_rec = multi_e[1]
if multi_c[2] > m_c_max_test_f1:
m_c_max_test_f1 = multi_c[2]
m_c_max_test_pre = multi_c[0]
m_c_max_test_rec = multi_c[1]
# if increase_flag == False:
# continue_not_increase += 1
# if continue_not_increase >= 20:
# print('early stop.')
# break
# else:
# continue_not_increase = 0
return (ec_max_test_pre, ec_max_test_rec, ec_max_test_f1), \
(e_max_test_pre, e_max_test_rec, e_max_test_f1), \
(c_max_test_pre, c_max_test_rec, c_max_test_f1), \
(m_ec_max_test_pre, m_ec_max_test_rec, m_ec_max_test_f1), \
(m_e_max_test_pre, m_e_max_test_rec, m_e_max_test_f1), \
(m_c_max_test_pre, m_c_max_test_rec, m_c_max_test_f1)
def _evaluate_acc_f1(self):
# switch model to evaluation mode
self.sub_model.eval()
with torch.no_grad():
all_emo_cau_pairs = None
all_doc_pairs = None
for test in get_test_single_batch_data(self.test, self.opt.batch_size):
inputs = [test[col].to(self.opt.device) for col in self.opt.inputs_cols]
topk_index, emo_pred, pair_pred, pair_index, pair_no_emo_pred, \
pair_no_emotion_oriented_index, emo_cau_pos = self.sub_model(inputs)
doc_id_batch = test['doc_id']
doc_couple = list(test['doc_couple'])
emo_cau_pair1 = self._evaluate_prf_binary(doc_id_batch, pair_pred, pair_index)
# emo_cau_pair2 = self._evaluate_prf_binary(doc_id_batch, pair_no_emo_pred, pair_no_emotion_oriented_index)
if all_emo_cau_pairs is None:
all_emo_cau_pairs = emo_cau_pair1
all_doc_pairs = doc_couple
else:
all_emo_cau_pairs.extend(emo_cau_pair1)
all_doc_pairs.extend(doc_couple)
sin_ec, sin_e, sin_c = self.eval_func(all_doc_pairs, all_emo_cau_pairs)
all_emo_cau_pairs = None
all_doc_pairs = None
for test in get_test_multi_batch_data(self.test, self.opt.batch_size):
inputs = [test[col].to(self.opt.device) for col in self.opt.inputs_cols]
topk_index, emo_pred, pair_pred, pair_index, pair_no_emo_pred, \
pair_no_emotion_oriented_index, emo_cau_pos = self.sub_model(inputs)
doc_id_batch = test['doc_id']
doc_couple = list(test['doc_couple'])
emo_cau_pair1 = self._evaluate_prf_binary(doc_id_batch, pair_pred, pair_index)
# emo_cau_pair2 = self._evaluate_prf_binary(doc_id_batch, pair_no_emo_pred, pair_no_emotion_oriented_index)
if all_emo_cau_pairs is None:
all_emo_cau_pairs = emo_cau_pair1
all_doc_pairs = doc_couple
else:
all_emo_cau_pairs.extend(emo_cau_pair1)
all_doc_pairs.extend(doc_couple)
multi_ec, multi_e, multi_c = self.eval_func(all_doc_pairs, all_emo_cau_pairs)
return sin_ec, sin_e, sin_c, multi_ec, multi_e, multi_c
def _evaluate_prf_binary(self, doc_ids, pair_pred, pair_index):
###pair_pred (32,15)//(32, 5*)
###pair_index (32,15,2)//(32, 5*,2)
top1 = torch.topk(pair_pred, 1).indices
emo_cau_pairs = []
for i, sample in enumerate(pair_pred):
emo_cau_pair = []
emo_index = pair_index[i][top1[i]][0]
if logistic(pair_pred[i][top1[i]]) <= 0.5 and (emo_index + 1) in self.emotion_model[str(doc_ids[i].item())]:
emo_cau_pair.append(pair_index[i][top1[i]])
for j in range(0, sample.shape[-1]):
if logistic(sample[j]) > 0.5 and pair_index[i][j][0] + 1 in self.emotion_model[str(doc_ids[i].item())]:
emo_cau_pair.append(pair_index[i][j])
emo_cau_pairs.append(emo_cau_pair)
return emo_cau_pairs
def eval_func(self, doc_couples_all, doc_couples_pred_all):
tmp_num = {'ec': 0, 'e': 0, 'c': 0}
tmp_den_p = {'ec': 0, 'e': 0, 'c': 0}
tmp_den_r = {'ec': 0, 'e': 0, 'c': 0}
for doc_couples, doc_couples_pred in zip(doc_couples_all, doc_couples_pred_all):
doc_couples = set([','.join(list(map(lambda x: str(x), doc_couple))) for doc_couple in doc_couples])
doc_couples_pred = set(
[','.join(list(map(lambda x: str(x), doc_couple))) for doc_couple in doc_couples_pred])
tmp_num['ec'] += len(doc_couples & doc_couples_pred)
tmp_den_p['ec'] += len(doc_couples_pred)
tmp_den_r['ec'] += len(doc_couples)
doc_emos = set([doc_couple.split(',')[0] for doc_couple in doc_couples])
doc_emos_pred = set([doc_couple.split(',')[0] for doc_couple in doc_couples_pred])
tmp_num['e'] += len(doc_emos & doc_emos_pred)
tmp_den_p['e'] += len(doc_emos_pred)
tmp_den_r['e'] += len(doc_emos)
doc_caus = set([doc_couple.split(',')[1] for doc_couple in doc_couples])
doc_caus_pred = set([doc_couple.split(',')[1] for doc_couple in doc_couples_pred])
tmp_num['c'] += len(doc_caus & doc_caus_pred)
tmp_den_p['c'] += len(doc_caus_pred)
tmp_den_r['c'] += len(doc_caus)
metrics = {}
for task in ['ec', 'e', 'c']:
p = tmp_num[task] / (tmp_den_p[task] + 1e-8)
r = tmp_num[task] / (tmp_den_r[task] + 1e-8)
f = 2 * p * r / (p + r + 1e-8)
metrics[task] = (p, r, f)
return metrics['ec'], metrics['e'], metrics['c']
def run(self, folder, repeats=1):
# Loss and Optimizer
print(('-'*50 + 'Folder{}' + '-'*50).format(folder))
# criterion = nn.CrossEntropyLoss()
# criterion = nn.functional.nll_loss()
pre_params = list(self.sub_model.shared_networks.parameters()) + list(self.sub_model.emotion_prediction.parameters())+\
(list(self.sub_model.no_emotion_oriented_pair_prediction.parameters()))
pre_params_ = filter(lambda p: p.requires_grad, pre_params)
pre_optimizer = self.opt.optimizer(pre_params_, lr=self.opt.learning_rate, weight_decay=self.opt.l2reg)
train_params = list(self.sub_model.shared_networks.parameters()) + list(
self.sub_model.emotion_prediction.parameters()) + \
(list(self.sub_model.emotion_oriented_pair_prediction.parameters()))
train_params_ = filter(lambda p: p.requires_grad, train_params)
train_optimizer = self.opt.optimizer(train_params_, lr=self.opt.learning_rate, weight_decay=self.opt.l2reg)
if not os.path.exists('log/single_multi_/'):
os.mkdir('log/single_multi_/')
f_out = open('log/single_multi_/' + self.opt.model_name + '_' + str(folder) + '_test.txt', 'a+', encoding='utf-8')
ec_max_test_pre_avg = 0
ec_max_test_rec_avg = 0
ec_max_test_f1_avg = 0
e_max_test_pre_avg = 0
e_max_test_rec_avg = 0
e_max_test_f1_avg = 0
c_max_test_pre_avg = 0
c_max_test_rec_avg = 0
c_max_test_f1_avg = 0
for i in range(repeats):
print('repeat: ', (i + 1))
f_out.write('repeat: ' + str(i + 1))
self._reset_params()
ec_max_test, e_max_test, c_max_test, m_ec_max_test, m_e_max_test, m_c_max_test = self._train(pre_optimizer, train_optimizer, f_out)
print('Single ec_max_test: {} e_max_test: {} c_max_test: {}\n'.format(ec_max_test, e_max_test, c_max_test))
print('Multi ec_max_test: {} e_max_test: {} c_max_test: {}\n'.format(m_ec_max_test, m_e_max_test, m_c_max_test))
f_out.write('Single ec_max_test: {} e_max_test: {} c_max_test: {}\n'.format(ec_max_test, e_max_test, c_max_test))
f_out.write('Multi ec_max_test: {} e_max_test: {} c_max_test: {}\n'.format(m_ec_max_test, m_e_max_test, m_c_max_test))
ec_max_test_pre_avg += ec_max_test[0]
ec_max_test_rec_avg += ec_max_test[1]
ec_max_test_f1_avg += ec_max_test[2]
e_max_test_pre_avg += e_max_test[0]
e_max_test_rec_avg += e_max_test[1]
e_max_test_f1_avg += e_max_test[2]
c_max_test_pre_avg += c_max_test[0]
c_max_test_rec_avg += c_max_test[1]
c_max_test_f1_avg += c_max_test[2]
print('#' * 100)
f_out.close()
return (ec_max_test_pre_avg, ec_max_test_rec_avg, ec_max_test_f1_avg),\
(e_max_test_pre_avg, e_max_test_rec_avg, e_max_test_f1_avg),\
(c_max_test_pre_avg, c_max_test_rec_avg, c_max_test_f1_avg)
if __name__ == '__main__':
# Hyper Parameters
parser = argparse.ArgumentParser()
parser.add_argument('--model_name', default='networks', type=str)
parser.add_argument('--optimizer', default='adamw', type=str)
parser.add_argument('--initializer', default='xavier_uniform_', type=str)
parser.add_argument('--learning_rate', default=0.001, type=float)
parser.add_argument('--input_dropout', default=0.1, type=float)
parser.add_argument('--gcn_dropout', default=0.1, type=float)
parser.add_argument('--head_dropout', default=0.1, type=float)
parser.add_argument('--keep_prob2', default=0.1, type=float)
parser.add_argument('--keep_prob1', default=0.1, type=float)
parser.add_argument('--alpha', default=0.3, type=float)
# parser.add_argument('--l2reg', default=0.00001, type=float)
parser.add_argument('--l2reg', default=0.00001, type=float)
# parser.add_argument('--l2reg', default=0.000005, type=float)
parser.add_argument('--num_epoch', default=100, type=int)
parser.add_argument('--pre_num_epoch', default=5, type=int)
parser.add_argument('--batch_size', default=32, type=int)
parser.add_argument('--log_step', default=10, type=int)
parser.add_argument('--embed_dim', default=200, type=int)
parser.add_argument('--embedding_dim_pos', default=100, type=int)
###中文数据集的embedding文件
parser.add_argument('--embedding_path', default='embedding.txt', type=str)
parser.add_argument('--emo_embedding_path', default='emo_embedding.txt', type=str)
###英文数据集的embedding文件################################
# parser.add_argument('--embedding_path', default='all_embedding_en.txt', type=str)
#################################################
parser.add_argument('--pos_num',default=138, type=int)
parser.add_argument('--hidden_dim', default=100, type=int)
parser.add_argument('--emo_num', default=700, type=int)
parser.add_argument('--embedding_dim_emo', default=200, type=int)
parser.add_argument('--no_word_rnn', default=False, type=bool)
parser.add_argument('--no_clause_rnn', default=False, type=bool)
parser.add_argument('--rnn_layer', default=1, type=int)
parser.add_argument('--rnn_hidden', default=100, type=int)
parser.add_argument('--rnn_word_dropout', default=0.5, type=float)
parser.add_argument('--rnn_clause_dropout', default=0.1, type=float)
parser.add_argument('--emo_dropout', default=0.1, type=float)
parser.add_argument('--con_dropout', default=0.1, type=float)
parser.add_argument('--no_pos', default=False, type=bool)
parser.add_argument('--n_split', default=10, type=int)
parser.add_argument('--per', default=1.0, type=float)
parser.add_argument('--no_lexicon_emotion', default=True, type=bool)
parser.add_argument('--use_emotion_tag', default=True, type=bool)
parser.add_argument('--window_size', default=5, type=int)
parser.add_argument('--topk', default=3, type=int)
parser.add_argument('--oriented_way', default=1, type=int)
parser.add_argument('--num_class', default=2, type=int)
parser.add_argument('--save', default=False, type=bool)
parser.add_argument('--seed', default=776, type=int)
parser.add_argument('--device', default=None, type=str)
parser.add_argument('--infer_time', default=True, type=bool)
####数据集为英文数据集
parser.add_argument('--dataset', default='EC', type=str)
parser.add_argument('--emotion_model', default='./model/sentimental_clauses.pkl', type=str)
####数据集为中文数据集
# parser.add_argument('--dataset', default='EC', type=str)
opt = parser.parse_args()
model_classes = {
'networks':Networks
}
input_colses = {
'networks': ['content', 'sen_len', 'doc_len', 'doc_id']
}
initializers = {
'xavier_uniform_': torch.nn.init.xavier_uniform_,
'xavier_normal_': torch.nn.init.xavier_normal,
'orthogonal_': torch.nn.init.orthogonal_,
}
optimizers = {
'adadelta': torch.optim.Adadelta, # default lr=1.0
'adagrad': torch.optim.Adagrad, # default lr=0.01
'adam': torch.optim.Adam, # default lr=0.001
'adamw': torch.optim.AdamW,
'adamax': torch.optim.Adamax, # default lr=0.002
'asgd': torch.optim.ASGD, # default lr=0.01
'rmsprop': torch.optim.RMSprop, # default lr=0.01
'sgd': torch.optim.SGD,
}
opt.model_class = model_classes[opt.model_name]
opt.inputs_cols = input_colses[opt.model_name]
opt.initializer = initializers[opt.initializer]
opt.optimizer = optimizers[opt.optimizer]
if opt.dataset == 'EC':
opt.max_doc_len = 75
opt.max_sen_len = 45
opt.data_size = 2105
opt.hidden_dim = 100
opt.rnn_hidden = 100
opt.embed_dim = 200
opt.embedding_path = 'all_embedding.txt'
else:
opt.max_doc_len = 45
opt.max_sen_len = 130
opt.data_size = 2105
opt.hidden_dim = 150
opt.rnn_hidden = 150
opt.embed_dim = 300
opt.embedding_path = 'all_embedding_en.txt'
opt.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') \
if opt.device is None else torch.device(opt.device)
if opt.seed is not None:
random.seed(opt.seed)
np.random.seed(opt.seed)
torch.manual_seed(opt.seed)
torch.cuda.manual_seed(opt.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
ec_p, ec_r, ec_f1 = [], [], []
e_p, e_r, e_f1 = [], [], []
c_p, c_r, c_f1 = [], [], []
for i in range(9, 10):
model = Model(opt, i)
###计算模型大
model._print_args()
ec, e, c = model.run(i)
ec_p.append(ec[0])
ec_r.append(ec[1])
ec_f1.append(ec[2])
e_p.append(e[0])
e_r.append(e[1])
e_f1.append(e[2])
c_p.append(c[0])
c_r.append(c[1])
c_f1.append(c[2])
print("EC: max_test_pre_avg: {:.4f}, max_test_rec_avg: {:.4f}, max_test_f1_avg: {:.4f}".format(np.mean(ec_p), np.mean(ec_r), np.mean(ec_f1)))
print("E: max_test_pre_avg: {:.4f}, max_test_rec_avg: {:.4f}, max_test_f1_avg: {:.4f}".format(np.mean(e_p), np.mean(e_r), np.mean(e_f1)))
print("C: max_test_pre_avg: {:.4f}, max_test_rec_avg: {:.4f}, max_test_f1_avg: {:.4f}".format(np.mean(c_p), np.mean(c_r), np.mean(c_f1)))