-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtest.py
210 lines (181 loc) · 7.55 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
import cv2
import json
import pickle
import numpy as np
import os
import sklearn.metrics as sk_metrics
import torch
import torch.nn.functional as F
import util
import pandas as pd
from args import TestArgParser
from data_loader import CTDataLoader
from collections import defaultdict
from logger import TestLogger
from PIL import Image
from saver import ModelSaver
from tqdm import tqdm
import numpy as np
from sklearn import metrics, datasets, manifold
from scipy import optimize
from matplotlib import pyplot
import pandas
import collections
import time
import sys
import pandas as pd
def test(args,table):
print ("Stage 1")
model, ckpt_info = ModelSaver.load_model(args.ckpt_path, args.gpu_ids)
print ("Stage 2")
args.start_epoch = ckpt_info['epoch'] + 1
model = model.to(args.device)
print ("Stage 3")
model.eval()
print ("Stage 4")
data_loader = CTDataLoader(args, phase=args.phase, is_training=False)
study2slices = defaultdict(list)
study2probs = defaultdict(list)
study2labels = {}
logger = TestLogger(args, len(data_loader.dataset), data_loader.dataset.pixel_dict)
means = []
# Get model outputs, log to TensorBoard, write masks to disk window-by-window
util.print_err('Writing model outputs to {}...'.format(args.results_dir))
with tqdm(total=len(data_loader.dataset), unit=' windows') as progress_bar:
for i, (inputs, targets_dict) in enumerate(data_loader):
# prepare table data
ids = [int(item) for item in targets_dict['study_num']]
table_data=[]
for i in range(len(targets_dict['study_num'])):
print(ids[i])
table_data.append(torch.tensor(np.array(table[table['idx']==ids[i]].iloc[:,4:]),dtype=torch.float32))
table_data = torch.stack(table_data).squeeze(1)
means.append(inputs.mean().item())
with torch.no_grad():
cls_logits = model.forward(inputs.to(args.device),table_data.to(args.device))
cls_probs = F.sigmoid(cls_logits)
if args.visualize_all:
logger.visualize(inputs, cls_logits, targets_dict=None, phase=args.phase, unique_id=i)
max_probs = cls_probs.to('cpu').numpy()
for study_num, slice_idx, prob in \
zip(targets_dict['study_num'], targets_dict['slice_idx'], list(max_probs)):
# Convert to standard python data types
study_num = int(study_num)
slice_idx = int(slice_idx)
# Save series num for aggregation
study2slices[study_num].append(slice_idx)
study2probs[study_num].append(prob.item())
series = data_loader.get_series(study_num)
if study_num not in study2labels:
study2labels[study_num] = int(series.is_positive)
progress_bar.update(inputs.size(0))
util.print_err('Combining masks...')
max_probs = []
labels = []
predictions = {}
print("Get max probability")
acc_list=[]
specificity_list=[]
sensitivity_list=[]
PPV_list=[]
NPV_list=[]
for study_num in tqdm(study2slices):
slice_list, prob_list = (list(t) for t in zip(*sorted(zip(study2slices[study_num], study2probs[study_num]),
key=lambda slice_and_prob: slice_and_prob[0])))
study2slices[study_num] = slice_list
study2probs[study_num] = prob_list
max_prob = max(prob_list)
max_probs.append(max_prob)
label = study2labels[study_num]
labels.append(label)
predictions[study_num] = {'label':label, 'pred':max_prob}
threshold=0.3
sum_correct=0
TN = 0
TP = 0
FN = 0
FP = 0
# print(predictions.values())
for i in predictions.values():
flag=0
if i['pred']>=threshold:
flag=1
if i['label']==flag:
sum_correct+=1
if i['pred']<threshold and i['label']==0:
TN+=1
elif i['pred']>=threshold and i['label']==1:
TP+=1
elif i['pred']<threshold and i['label']==1:
FN+=1
elif i['pred']>=threshold and i['label']==0:
FP+=1
accuracy=sum_correct/len(predictions)
acc_list.append(accuracy)
specificity=TN/(TN+FN+1e-9)
specificity_list.append(specificity)
sensitivity=TP/(TP+FN+1e-9)
sensitivity_list.append(sensitivity)
PPV=TP/(TP+FP+1e-9)
PPV_list.append(PPV)
NPV=TN/(TN+FN+1e-9)
NPV_list.append(NPV)
#Save predictions to file, indexed by study number
print("Save to pickle")
with open('{}/preds.pickle'.format(args.results_dir),"wb") as fp:
pickle.dump(predictions,fp)
# Write features for XGBoost
save_for_xgb(args.results_dir, study2probs, study2labels)
# Write the slice indices used for the features
print("Write slice indices")
with open(os.path.join(args.results_dir, 'xgb', 'series2slices.json'), 'w') as json_fh:
json.dump(study2slices, json_fh, sort_keys=True, indent=4)
# Compute AUROC and AUPRC using max aggregation, write to files
max_probs, labels = np.array(max_probs), np.array(labels)
metrics = {
args.phase + '_' + 'AUPRC': sk_metrics.average_precision_score(labels, max_probs),
args.phase + '_' + 'AUROC': sk_metrics.roc_auc_score(labels, max_probs),
}
print("Write metrics")
with open(os.path.join(args.results_dir, 'metrics.txt'), 'w') as metrics_fh:
for k, v in metrics.items():
metrics_fh.write('{}: {:.5f}\n'.format(k, v))
for i in range(len(acc_list)):
metrics_fh.write("acc:{:.5f}\n".format(acc_list[i]))
metrics_fh.write("Specificity: {:.5f}\n".format(specificity_list[i]))
metrics_fh.write("Sensitivity: {:.5f}\n".format(sensitivity_list[i]))
metrics_fh.write("PPV: {:.5f}\n".format(PPV_list[i]))
metrics_fh.write("NPV: {:.5f}\n".format(NPV_list[i]))
curves = {
args.phase + '_' + 'PRC': sk_metrics.precision_recall_curve(labels, max_probs),
args.phase + '_' + 'ROC': sk_metrics.roc_curve(labels, max_probs)
}
for name, curve in curves.items():
curve_np = util.get_plot(name, curve)
curve_img = Image.fromarray(curve_np)
curve_img.save(os.path.join(args.results_dir, '{}.png'.format(name)))
def save_for_xgb(results_dir, series2probs, series2labels):
"""Write window-level and series-level features to train an XGBoost classifier.
Args:
results_dir: Path to results directory for writing outputs.
series2probs: Dict mapping series numbers to probabilities.
series2labels: Dict mapping series numbers to labels.
"""
# Convert to numpy
xgb_inputs = np.zeros([len(series2probs), max(len(p) for p in series2probs.values())])
xgb_labels = np.zeros(len(series2labels))
for i, (series_num, probs) in enumerate(series2probs.items()):
xgb_inputs[i, :len(probs)] = np.array(probs).ravel()
xgb_labels[i] = series2labels[series_num]
# Write to disk
os.makedirs(os.path.join(results_dir, 'xgb'), exist_ok=True)
xgb_inputs_path = os.path.join(results_dir, 'xgb', 'inputs.npy')
xgb_labels_path = os.path.join(results_dir, 'xgb', 'labels.npy')
np.save(xgb_inputs_path, xgb_inputs)
np.save(xgb_labels_path, xgb_labels)
if __name__ == '__main__':
table_data = pd.read_csv('/mntcephfs/lab_data/wangcm/wzp/ehr/ehr_nosub_1.csv')
util.set_spawn_enabled()
parser = TestArgParser()
args_ = parser.parse_args()
test(args_,table_data)