-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
263 lines (226 loc) · 10 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
# coding: utf-8
import os
import subprocess
from pathlib import Path
import tyro
import gradio as gr
import os.path as osp
from src.utils.helper import load_description
from src.gradio_pipeline import GradioPipeline
from src.config.crop_config import CropConfig
from src.config.argument_config import ArgumentConfig
from src.config.inference_config import InferenceConfig
from src.utils.video import has_audio_stream, exec_cmd, VideoEnhancer
# Paths
project_root = Path('D:/tools/LivePortrait')
live_portrait_output_dir = project_root / 'output'
esrgan_input_dir = live_portrait_output_dir / 'frames'
esrgan_output_dir = live_portrait_output_dir / 'enhanced_frames'
esrgan_model_path = project_root / 'pretrained_weights' / 'RealESRGAN_x4plus_anime_6B.pth'
esrgan_script_path = project_root / 'real-esrgan' / 'inference_realesrgan.py'
# Ensure the output directory exists
os.makedirs(live_portrait_output_dir, exist_ok=True)
os.makedirs(esrgan_input_dir, exist_ok=True)
os.makedirs(esrgan_output_dir, exist_ok=True)
enhancer = VideoEnhancer(esrgan_script_path, esrgan_model_path, esrgan_output_dir)
def partial_fields(target_class, kwargs):
return target_class(**{k: v for k, v in kwargs.items() if hasattr(target_class, k)})
def downscale_video(input_video_path, output_video_path, width=1280):
command = [
'ffmpeg', '-i', str(input_video_path), '-vf', f'scale={width}:-1', str(output_video_path)
]
subprocess.run(command, check=True)
def extract_frames(video_path, output_dir):
command = [
'ffmpeg', '-i', str(video_path),
str(output_dir / 'frame_%04d.png')
]
subprocess.run(command, check=True)
def reassemble_video(input_dir, output_video_path, fps=30):
command = [
'ffmpeg', '-framerate', str(fps), '-i',
str(input_dir / 'frame_%04d.png'), '-c:v', 'libx264',
'-pix_fmt', 'yuv420p', str(output_video_path)
]
subprocess.run(command, check=True)
def enhance_video(video_path):
downscaled_video_path = live_portrait_output_dir / 'downscaled_video.mp4'
enhanced_video_path = live_portrait_output_dir / 'enhanced_live_portrait.mp4'
# Downscale the video
downscale_video(video_path, downscaled_video_path)
# Extract frames from the video
extract_frames(downscaled_video_path, esrgan_input_dir)
# Enhance frames using Real-ESRGAN
enhancer.enhance_frames(esrgan_input_dir)
# Reassemble the enhanced frames into a video
reassemble_video(esrgan_output_dir, enhanced_video_path)
return enhanced_video_path
# set tyro theme
tyro.extras.set_accent_color("bright_cyan")
args = tyro.cli(ArgumentConfig)
# specify configs for inference
inference_cfg = partial_fields(InferenceConfig, args.__dict__) # use attribute of args to initial InferenceConfig
crop_cfg = partial_fields(CropConfig, args.__dict__) # use attribute of args to initial CropConfig
gradio_pipeline = GradioPipeline(
inference_cfg=inference_cfg,
crop_cfg=crop_cfg,
args=args
)
def gpu_wrapped_execute_video(*args, **kwargs):
video_path = gradio_pipeline.execute_video(*args, **kwargs)
return video_path
def gpu_wrapped_execute_image(*args, **kwargs):
return gradio_pipeline.execute_image(*args, **kwargs)
# assets
example_portrait_dir = "assets/examples/source"
example_video_dir = "assets/examples/driving"
data_examples = [
[osp.join(example_portrait_dir, "s9.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, False],
[osp.join(example_portrait_dir, "s6.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, False],
[osp.join(example_portrait_dir, "s10.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, False],
[osp.join(example_portrait_dir, "s5.jpg"), osp.join(example_video_dir, "d18.mp4"), True, True, True, False],
[osp.join(example_portrait_dir, "s7.jpg"), osp.join(example_video_dir, "d19.mp4"), True, True, True, False],
[osp.join(example_portrait_dir, "s2.jpg"), osp.join(example_video_dir, "d13.mp4"), True, True, True, True],
]
#################### interface logic ####################
# Define components first
eye_retargeting_slider = gr.Slider(minimum=0, maximum=0.8, step=0.01, label="Target eyes-open ratio")
lip_retargeting_slider = gr.Slider(minimum=0, maximum=0.8, step=0.01, label="Target lip-open ratio")
retargeting_input_image = gr.Image(type="filepath")
output_image = gr.Image(type="numpy")
output_image_paste_back = gr.Image(type="numpy")
output_video = gr.Video()
output_video_concat = gr.Video()
# Placeholder for enhanced video output
enhanced_video = gr.Video()
def enhance_video_interface(video_path):
enhanced_video_path = enhance_video(video_path)
return enhanced_video_path
with gr.Blocks(theme=gr.themes.Soft(), css=".gradio-container {max-width: 100%; margin: auto;}") as demo:
gr.Markdown("# LivePortrait based PresentaPulse")
gr.Markdown("### Efficient Portrait Animation with Smoothing and Retargeting Control")
with gr.Row():
with gr.Column():
gr.Markdown("#### Source Portrait")
image_input = gr.Image(type="filepath")
gr.Examples(
examples=[
[osp.join(example_portrait_dir, "s9.jpg")],
[osp.join(example_portrait_dir, "s6.jpg")],
[osp.join(example_portrait_dir, "s10.jpg")],
[osp.join(example_portrait_dir, "s5.jpg")],
[osp.join(example_portrait_dir, "s7.jpg")],
[osp.join(example_portrait_dir, "s12.jpg")],
],
inputs=[image_input],
cache_examples=False,
)
with gr.Column():
gr.Markdown("#### Driving Video")
video_input = gr.Video()
gr.Examples(
examples=[
[osp.join(example_video_dir, "d0.mp4")],
[osp.join(example_video_dir, "d18.mp4")],
[osp.join(example_video_dir, "d19.mp4")],
[osp.join(example_video_dir, "d14.mp4")],
[osp.join(example_video_dir, "d6.mp4")],
],
inputs=[video_input],
cache_examples=False,
)
with gr.Row():
with gr.Accordion(open=False, label="Animation Instructions and Options"):
with gr.Row():
flag_relative_input = gr.Checkbox(value=True, label="Relative motion")
flag_do_crop_input = gr.Checkbox(value=True, label="Do crop (source)")
flag_remap_input = gr.Checkbox(value=True, label="Paste-back")
flag_crop_driving_video_input = gr.Checkbox(value=False, label="Do crop (driving video)")
with gr.Row():
process_button_animation = gr.Button("🚀 Animate", variant="primary")
process_button_reset = gr.ClearButton([image_input, video_input, output_video, output_video_concat],
value="🧹 Clear")
enhance_button = gr.Button("🔍 Enhance with Real-ESRGAN", variant="primary")
with gr.Row():
with gr.Column():
gr.Markdown("#### The animated video in the original image space")
output_video.render()
with gr.Column():
gr.Markdown("#### The animated video")
output_video_concat.render()
with gr.Row():
with gr.Column():
gr.Markdown("#### Enhanced video using Real-ESRGAN")
enhanced_video.render()
gr.Markdown("### Retargeting")
gr.Markdown(
"To edit the eyes and lip open ratio of the source portrait, drag the sliders and click the Retargeting button. You can try running it multiple times. Set both ratios to 0.8 to see what's going on!")
with gr.Row():
eye_retargeting_slider.render()
lip_retargeting_slider.render()
with gr.Row():
process_button_retargeting = gr.Button("🚗 Retargeting", variant="primary")
process_button_reset_retargeting = gr.ClearButton(
[
eye_retargeting_slider,
lip_retargeting_slider,
retargeting_input_image,
output_image,
output_image_paste_back
],
value="🧹 Clear"
)
with gr.Row():
with gr.Column():
gr.Markdown("#### Retargeting Input")
retargeting_input_image.render()
gr.Examples(
examples=[
[osp.join(example_portrait_dir, "s9.jpg")],
[osp.join(example_portrait_dir, "s6.jpg")],
[osp.join(example_portrait_dir, "s10.jpg")],
[osp.join(example_portrait_dir, "s5.jpg")],
[osp.join(example_portrait_dir, "s7.jpg")],
[osp.join(example_portrait_dir, "s12.jpg")],
],
inputs=[retargeting_input_image],
cache_examples=False,
)
with gr.Column():
gr.Markdown("#### Retargeting Result")
output_image.render()
with gr.Column():
gr.Markdown("#### Paste-back Result")
output_image_paste_back.render()
# binding functions for buttons
process_button_retargeting.click(
fn=gpu_wrapped_execute_image,
inputs=[eye_retargeting_slider, lip_retargeting_slider, retargeting_input_image, flag_do_crop_input],
outputs=[output_image, output_image_paste_back],
show_progress=True
)
process_button_animation.click(
fn=gpu_wrapped_execute_video,
inputs=[
image_input,
video_input,
flag_relative_input,
flag_do_crop_input,
flag_remap_input,
flag_crop_driving_video_input
],
outputs=[output_video, output_video_concat],
show_progress=True
)
enhance_button.click(
fn=enhance_video_interface,
inputs=[output_video_concat],
outputs=[enhanced_video],
show_progress=True
)
demo.launch(
# server_port=args.server_port,
share=True,
server_name=args.server_name,
server_port=8080 # Specify a different port here
)