-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_ner.py
593 lines (485 loc) · 17.4 KB
/
run_ner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
# -*- coding: utf-8 -*-
"""
Already Support: BERT
TODO: add mode: XLNET, ALBERT, RoBERTa
"""
import os
import collections
import pickle
import numpy as np
from absl import flags,logging,app
import tensorflow as tf
from posner.applications import bert
from posner.applications import bert_crf
from posner.optimizers import AdamWarmup
from posner.metrics import precision, recall,f1
from posner.utils import bert_tokenization as tokenization
from posner.datasets import chinese_daily_ner
FLAGS = flags.FLAGS
## Required parameters
flags.DEFINE_string(
"bert_config_file", None,
"The config json file corresponding to the pre-trained BERT model. "
"This specifies the model architecture.")
flags.DEFINE_string(
"vocab_file",
None,
"The vocabulary file that the BERT model was trained on.")
flags.DEFINE_string(
"output_dir", None,
"The output directory where the model checkpoints will be written.")
## Other parameters
flags.DEFINE_string(
"use_focal_loss", False,
"")
flags.DEFINE_string(
"data_dir", None,
"The input data dir. Should contain the .tsv files (or other data files) "
"for the task.")
flags.DEFINE_string(
"task_name",
None,
"The name of the task to train.")
flags.DEFINE_string(
"init_checkpoint", None,
"Initial checkpoint (usually from a pre-trained BERT model).")
flags.DEFINE_bool(
"do_lower_case",
True,
"Whether to lower case the input text. Should be True for uncased "
"models and False for cased models.")
flags.DEFINE_integer(
"max_seq_length", 128,
"The maximum total input sequence length after WordPiece tokenization. "
"Sequences longer than this will be truncated, and sequences shorter "
"than this will be padded.")
flags.DEFINE_bool(
"do_train",
False,
"Whether to run training.")
flags.DEFINE_bool(
"do_eval",
False,
"Whether to run eval on the dev set.")
flags.DEFINE_bool(
"do_predict",
False,
"Whether to run the model in inference mode on the test set.")
flags.DEFINE_string(
"predict_input_file", None,
"The input file for prediction.")
flags.DEFINE_integer(
"train_batch_size",
32,
"Total batch size for training.")
flags.DEFINE_integer(
"eval_batch_size",
8,
"Total batch size for eval.")
flags.DEFINE_integer(
"predict_batch_size",
8,
"Total batch size for predict.")
flags.DEFINE_float(
"learning_rate",
5e-5,
"The initial learning rate for Adam.")
flags.DEFINE_integer(
"num_train_epochs",
3,
"Total number of training epochs to perform.")
flags.DEFINE_integer(
"decay_steps", 0,
"")
flags.DEFINE_float(
"warmup_proportion", 0.1,
"Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10% of training.")
flags.DEFINE_integer(
"save_checkpoints_steps",
1000,
"How often to save the model checkpoint.")
flags.DEFINE_integer(
"iterations_per_loop",
1000,
"How many steps to make in each estimator call.")
flags.DEFINE_bool(
"use_tpu",
False,
"Whether to use TPU or GPU/CPU.")
flags.DEFINE_string(
"tpu_name", None,
"The Cloud TPU to use for training. This should be either the name "
"used when creating the Cloud TPU, or a grpc://ip.address.of.tpu:8470 "
"url.")
flags.DEFINE_string(
"tpu_zone", None,
"[Optional] GCE zone where the Cloud TPU is located in. If not "
"specified, we will attempt to automatically detect the GCE project from "
"metadata.")
flags.DEFINE_string(
"gcp_project", None,
"[Optional] Project name for the Cloud TPU-enabled project. If not "
"specified, we will attempt to automatically detect the GCE project from "
"metadata.")
flags.DEFINE_string("master", None, "[Optional] TensorFlow master URL.")
flags.DEFINE_integer(
"num_tpu_cores", 8,
"Only used if `use_tpu` is True. Total number of TPU cores to use.")
flags.DEFINE_string(
"middle_output",
"middle_data",
"Dir was used to store middle data!")
flags.DEFINE_bool(
"crf",
False,
"use crf")
# legacy
class InputExample(object):
"""A single training/test example for simple sequence classification."""
def __init__(self, guid, text, label=None):
"""Constructs a InputExample.
Args:
guid: Unique id for the example.
text_a: string. The untokenized text of the first sequence. For single
sequence tasks, only this sequence must be specified.
label: (Optional) string. The label of the example. This should be
specified for train and dev examples, but not for test examples.
"""
self.guid = guid
self.text = text
self.label = label
# legacy
class InputFeatures(object):
"""A single set of features of data."""
def __init__(self,
input_ids,
mask,
segment_ids,
label_ids,
is_real_example=True):
self.input_ids = input_ids
self.mask = mask
self.segment_ids = segment_ids
self.label_ids = label_ids
self.is_real_example = is_real_example
# legacy
class DataProcessor(object):
"""Base class for data converters for sequence classification data sets."""
def get_train_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the train set."""
raise NotImplementedError()
def get_dev_examples(self, data_dir):
"""Gets a collection of `InputExample`s for the dev set."""
raise NotImplementedError()
def get_labels(self):
"""Gets the list of labels for this data set."""
raise NotImplementedError()
@classmethod
def _read_data(cls, input_file):
"""Read a BIO data!"""
rf = open(input_file, 'r')
lines = []
words = []
labels = []
for line in rf:
word = line.strip().split(' ')[0]
label = line.strip().split(' ')[-1]
if len(line.strip()) == 0 and words[-1] == '.':
l = ' '.join([label for label in labels if len(label) > 0])
w = ' '.join([word for word in words if len(word) > 0])
lines.append((l, w))
words = []
labels = []
words.append(word)
labels.append(label)
rf.close()
return lines
# legacy
class NerProcessor(DataProcessor):
def get_train_examples(self, data_dir):
return self._create_example(
self._read_data(os.path.join(data_dir, "train.txt")), "train"
)
def get_dev_examples(self, data_dir):
return self._create_example(
self._read_data(os.path.join(data_dir, "dev.txt")), "dev"
)
def get_test_examples(self, data_dir):
return self._create_example(
self._read_data(os.path.join(data_dir, "test.txt")), "test"
)
def get_labels(self):
return ['B-LOC', 'B-ORG', 'B-PER', 'I-LOC', 'I-ORG', 'I-PER', 'O']
def _create_example(self, lines, set_type): # set_type = {train dev test}
examples = []
for (i, line) in enumerate(lines):
guid = "%s-%s" % (set_type, i)
texts = tokenization.convert_to_unicode(line[1])
labels = tokenization.convert_to_unicode(line[0])
examples.append(InputExample(guid=guid, text=texts, label=labels))
return examples
def convert_single_example(ex_index, example, label_list, max_seq_length,
tokenizer, mode):
"""
example:[Jim,Hen,##son,was,a,puppet,##eer]
labels: [I-PER,I-PER,X,O,O,O,X]
Args:
ex_index: example num
example: all labels
label_list:
max_seq_length:
tokenizer: WordPiece tokenization
mode:
Returns:
feature
"""
label_map = {}
# here start with zero this means that "[PAD]" is zero
for (i, label) in enumerate(label_list):
label_map[label] = i
with open(FLAGS.middle_output + "/label2id.pkl", 'wb') as w:
pickle.dump(label_map, w)
textlist = example.text.split(' ')
labellist = example.label.split(' ')
tokens = []
labels = []
for i, (word, label) in enumerate(zip(textlist, labellist)):
token = tokenizer.tokenize(word)
tokens.extend(token)
for i, _ in enumerate(token):
if i == 0:
labels.append(label)
else:
labels.append("X")
# only Account for [CLS] with "- 1".
if len(tokens) >= max_seq_length - 1:
tokens = tokens[0:(max_seq_length - 1)]
labels = labels[0:(max_seq_length - 1)]
ntokens = []
segment_ids = []
label_ids = []
ntokens.append("[CLS]")
segment_ids.append(0)
label_ids.append(label_map["[CLS]"])
for i, token in enumerate(tokens):
ntokens.append(token)
segment_ids.append(0)
label_ids.append(label_map[labels[i]])
# after that we don't add "[SEP]" because we want a sentence don't have
# stop tag, because i think its not very necessary.
# or if add "[SEP]" the model even will cause problem, special the crf layer was used.
input_ids = tokenizer.convert_tokens_to_ids(ntokens)
mask = [1] * len(input_ids)
# use zero to padding and you should
while len(input_ids) < max_seq_length:
input_ids.append(0)
mask.append(0)
segment_ids.append(0)
label_ids.append(0)
ntokens.append("[PAD]")
assert len(input_ids) == max_seq_length
assert len(mask) == max_seq_length
assert len(segment_ids) == max_seq_length
assert len(label_ids) == max_seq_length
assert len(ntokens) == max_seq_length
if ex_index < 3:
logging.info("*** Example ***")
logging.info("guid: %s" % (example.guid))
logging.info("tokens: %s" % " ".join(
[tokenization.printable_text(x) for x in tokens]))
logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
logging.info("input_mask: %s" % " ".join([str(x) for x in mask]))
logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
logging.info("label_ids: %s" % " ".join([str(x) for x in label_ids]))
feature = InputFeatures(
input_ids=input_ids,
mask=mask,
segment_ids=segment_ids,
label_ids=label_ids,
)
# we need ntokens because if we do predict it can help us return to original token.
return feature, ntokens, label_ids
def file_based_input_fn_builder(input_file, seq_length, is_training,
drop_remainder):
name_to_features = {
"input_ids": tf.FixedLenFeature([seq_length], tf.int64),
"mask": tf.FixedLenFeature([seq_length], tf.int64),
"segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
"label_ids": tf.FixedLenFeature([seq_length], tf.int64),
}
def _decode_record(record, name_to_features):
example = tf.parse_single_example(record, name_to_features)
for name in list(example.keys()):
t = example[name]
if t.dtype == tf.int64:
t = tf.to_int32(t)
example[name] = t
return example
def input_fn(params):
batch_size = params["batch_size"]
d = tf.data.TFRecordDataset(input_file)
if is_training:
d = d.repeat()
d = d.shuffle(buffer_size=100)
d = d.apply(tf.data.experimental.map_and_batch(
lambda record: _decode_record(record, name_to_features),
batch_size=batch_size,
drop_remainder=drop_remainder
))
return d
return input_fn
def filed_based_convert_examples_to_features(examples, label_list,
max_seq_length, tokenizer,
output_file, mode=None):
writer = tf.python_io.TFRecordWriter(output_file)
batch_tokens = []
batch_labels = []
for (ex_index, example) in enumerate(examples):
if ex_index % 5000 == 0:
logging.info("Writing example %d of %d" % (ex_index, len(examples)))
feature, ntokens, label_ids = convert_single_example(ex_index, example,
label_list,
max_seq_length,
tokenizer, mode)
batch_tokens.extend(ntokens)
batch_labels.extend(label_ids)
def create_int_feature(values):
f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
return f
features = collections.OrderedDict()
features["input_ids"] = create_int_feature(feature.input_ids)
features["mask"] = create_int_feature(feature.mask)
features["segment_ids"] = create_int_feature(feature.segment_ids)
features["label_ids"] = create_int_feature(feature.label_ids)
tf_example = tf.train.Example(
features=tf.train.Features(feature=features))
writer.write(tf_example.SerializeToString())
# sentence token in each batch
writer.close()
return batch_tokens, batch_labels
def Writer(output_predict_file, result, batch_tokens, batch_labels, id2label):
def _write_base(batch_tokens, id2label, prediction, batch_labels, wf, i):
token = batch_tokens[i]
predict = id2label[prediction]
true_l = id2label[batch_labels[i]]
if token != "[PAD]" and token != "[CLS]" and true_l != "X":
#
if predict == "X" and not predict.startswith("##"):
predict = "O"
line = "{}\t{}\t{}\n".format(token, true_l, predict)
wf.write(line)
with open(output_predict_file, 'w') as wf:
if FLAGS.crf:
predictions = []
for m, pred in enumerate(result):
predictions.extend(pred)
for i, prediction in enumerate(predictions):
_write_base(batch_tokens, id2label, prediction, batch_labels, wf, i)
else:
for i, prediction in enumerate(result):
_write_base(batch_tokens, id2label, prediction, batch_labels, wf, i)
def train_ner():
tokenizer = tokenization.FullTokenizer(
vocab_file=FLAGS.vocab_file, do_lower_case=FLAGS.do_lower_case)
## TODO: update for nother datasets.
# processor = NerProcessor()
# train_examples = processor.get_train_examples(FLAGS.data_dir)
# label_list = processor.get_labels()
# output_dims = len(label_list)
(x_train, y_train), (x_test, y_test), (vocab, pos_tags) = \
chinese_daily_ner.load_data(path=None, maxlen=FLAGS.max_seq_length, onehot=True, min_freq=2)
output_dims = len(pos_tags)
num_train_steps = int(
len(x_train) * FLAGS.num_train_epochs / FLAGS.train_batch_size)
if FLAGS.crf:
model = bert_crf.load_trained_model_from_checkpoint(
config_file=FLAGS.bert_config_file,
checkpoint_file=FLAGS.init_checkpoint,
crf_dims=output_dims,
training=True,
seq_len=FLAGS.max_seq_length,
)
else:
model = bert.load_trained_model_from_checkpoint(
config_file=FLAGS.bert_config_file,
checkpoint_file=FLAGS.init_checkpoint,
training=True,
seq_len=FLAGS.max_seq_length,
)
bottle = tf.keras.layers.Dense(output_dims, activation='softmax', name='NER-output')
inp = model.input
out = bottle(model.layers[-9].output) # exlude MLM, NSP
model = tf.keras.models.Model(inp, out)
model.summary(line_length=150)
logging.info("***** Running training *****")
logging.info(" Num examples = %d", len(x_train))
logging.info(" Batch size = %d", FLAGS.train_batch_size)
logging.info(" Num steps = %d", num_train_steps)
warmup_steps=int(num_train_steps*FLAGS.warmup_proportion)
optimizer = AdamWarmup(decay_steps=FLAGS.decay_steps,warmup_steps=warmup_steps)
if FLAGS.use_focal_loss:
#TODO: test CategoricalFocalLoss
from posner.losses.focal_loss import CategoricalFocalLoss
focal_loss = CategoricalFocalLoss()
model.compile(optimizer=optimizer,
loss=focal_loss,
metrics=[precision,recall,f1])
else:
model.compile(optimizer=optimizer,
loss='categorical_crossentropy',
metrics=[precision,recall,f1])
model.fit([x_train, np.zeros_like(x_train),np.ones_like(x_train)],
y_train,
epochs=FLAGS.num_train_epochs)
return model
def eval_ner(model):
(x_train, y_train), (x_test, y_test), (vocab, pos_tags) = \
chinese_daily_ner.load_data(path=None, maxlen=FLAGS.max_seq_length, onehot=True, min_freq=2)
logging.info("***** Running evaluation *****")
logging.info(" Num examples = %d", len(x_test))
logging.info(" Batch size = %d", FLAGS.eval_batch_size)
_, precition, recall, f1 = model.evaluate(x=x_test, y=y_test)
logging.info("***********************************************")
logging.info("*********** Precision = %s*********************", str(precision))
logging.info("************** Recall = %s*********************", str(recall))
logging.info("****************** F1 = %s*********************", str(f1))
logging.info("***********************************************")
return model
def predict_ner(model):
def _process_data(data, character, maxlen=None):
if maxlen is None:
maxlen = max(len(s) for s in data[0])
word2idx = dict((w, i) for i, w in enumerate(character))
x = []
for s in data[0]:
temp = [word2idx.get(c, 1) for c in s]
x.append(temp)
x = tf.keras.preprocessing.sequence.pad_sequences(x, maxlen)
return x
(_,_),(_,_), (character, pos_tags) = \
chinese_daily_ner.load_data()
with open(FLAGS.predict_input_file, 'r') as f:
text = f.readlines()
logging.info("***** Running prediction*****")
logging.info(" Num examples = %d", len(text))
x = _process_data(text, character, maxlen=None)
y = model.predict(x)
y = np.argmax(y, axis=0)
y = [pos_tags[i] for i in list(y)]
with open(os.path.join(FLAGS.output_dir, "label_test.txt"), 'w+') as f:
for char, ner in zip(list(x), y):
f.write('{} {}\n'.format(char, ner))
def main(_):
logging.set_verbosity(logging.INFO)
if FLAGS.do_train:
model = train_ner()
if FLAGS.do_eval:
model=eval_ner(model)
if FLAGS.do_predict:
model=predict_ner(model)
if __name__ == "__main__":
flags.mark_flag_as_required("bert_config_file")
flags.mark_flag_as_required("vocab_file")
flags.mark_flag_as_required("output_dir")
app.run(main)