-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathMulti_Graph_Demand.py
146 lines (123 loc) · 4.82 KB
/
Multi_Graph_Demand.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# link: https://github.com/SkrLamei/2019-ZJU_SummerResearch/tree/master/OriginalData
import pandas as pd
import numpy as np
import os
import datetime
import util
import json
outputdir = 'output/Multi_Graph_Demand'
util.ensure_dir(outputdir)
dataurl = 'input/Multi_Graph_Demand/'
dataname = outputdir + '/Multi_Graph_Demand'
util.ensure_dir(dataurl)
NODE_NUM = 30
poi_30_path = os.path.join(dataurl, "poi_30.csv")
point_location_path = os.path.join(dataurl,"PointsID.csv")
poi_array = pd.read_csv(poi_30_path).values
point_location_array = pd.read_csv(point_location_path,header=None).values
def find_location(point_id):
for i in range(len(point_location_array)):
if point_id == point_location_array[i][0]:
x,y = point_location_array[i][1],point_location_array[i][2]
item = []
item.append("%.6f"%x)
item.append("%.6f"%y)
return "["+",".join(item)+"]"
raise Exception("not find")
geo_data = []
for raw in range(NODE_NUM):
item = []
item.append(str(raw))
item.append("Point")
point_id = poi_array[raw][0]
item.append(find_location(point_id))
for i in range(1,len(poi_array[raw])):
item.append(poi_array[raw][i])
geo_data.append(item)
poi_types = list(pd.read_csv(poi_30_path).columns)
geo = pd.DataFrame(geo_data,columns=['geo_id','type','coordinates']+poi_types[1:])
geo.to_csv(dataname+'.geo',index=False)
def weight_matrix(file_path, sigma2=0.1, epsilon=0.5, scaling=True):
try:
W = pd.read_csv(file_path, header=None).values
except FileNotFoundError:
print('input file was not found')
# check whether W is a 0/1 matrix.
if set(np.unique(W)) == {0, 1}:
print('The input graph is a 0/1 matrix; set "scaling" to False.')
scaling = False
if scaling:
n = W.shape[0]
W = W / 10000.
W2, W_mask = W * W, np.ones([n, n]) - np.identity(n)
# refer to Eq.10
return np.exp(-W2 / sigma2) * (np.exp(-W2 / sigma2) >= epsilon) * W_mask
else:
return W
simi_30_path = os.path.join(dataurl, "weight_simi.csv")
adj_30_path = os.path.join(dataurl, "weight_adj.csv")
distance_path = os.path.join(dataurl, "PointsDistance.csv")
dis_weight = weight_matrix(distance_path)
dis_array = pd.DataFrame(dis_weight)
adj_array = pd.read_csv(adj_30_path,header=None).values
simi_array = pd.read_csv(simi_30_path,header=None).values
rel_data = []
rel_id = 0
for i in range(30):
for j in range(30):
item = []
item.append(rel_id)
item.append("geo")
item.append(i),item.append(j)
item.append(dis_array[i][j])
item.append(adj_array[i][j])
item.append(simi_array[i][j])
rel_data.append(item)
rel_id += 1
rel = pd.DataFrame(rel_data,columns=['rel_id','type','origin_id','destination_id','distance','connection','similarity'])
rel.to_csv(dataname+'.rel',index=False)
all_data_path = os.path.join(dataurl, "data.csv")
raw_grid_df = pd.read_csv(all_data_path,header=None)
raw_grid_array = np.array(raw_grid_df)
grid_array = []
dyna_id = 0
now_time = datetime.datetime(year=2017,month=1,day=1)
for i in range(len(raw_grid_array)):
for j in range(30):
item = []
item.append(dyna_id)
item.append("state")
now_time_str = now_time.strftime("%Y-%m-%dT%H:%M:%SZ")
item.append(now_time_str)
item.append(j)
item.append(raw_grid_array[i][j])
grid_array.append(item)
dyna_id += 1
now_time = now_time + datetime.timedelta(minutes=5)
grid_array = sorted(grid_array,key=(lambda x:x[3]))
for i in range(len(grid_array)):
grid_array[i][0] = i
grid = pd.DataFrame(grid_array,columns=['geo_id','type','coordinates','entity_id','demand'])
grid.to_csv(dataname+'.dyna',index=False)
config = dict()
config['geo'] = dict()
config['geo']['including_types'] = ['Point']
config['geo']['Point'] = {}
config['rel'] = dict()
config['rel']['including_types'] = ['geo']
config['rel']['geo'] = {'distance':'num','connection': 'num','similarity': 'num'}
config['dyna'] = dict()
config['dyna']['including_types'] = ['state']
config['dyna']['state'] = {'entity_id': 'geo_id', 'demand': 'num'}
config['info'] = dict()
config['info']['data_col'] = ['demand']
config['info']['data_files'] = ['Multi_Graph_Demand']
config['info']['geo_file'] = 'Multi_Graph_Demand'
config['info']['rel_file'] = 'Multi_Graph_Demand'
config['info']['output_dim'] = 1
config['info']['time_intervals'] = 300
config['info']['init_weight_inf_or_zero'] = 'zero'
config['info']['set_weight_link_or_dist'] = 'dist'
config['info']['calculate_weight_adj'] = True
config['info']['weight_adj_epsilon'] = 0.1
json.dump(config, open(outputdir+'/config.json', 'w', encoding='utf-8'), ensure_ascii=False)