forked from estonshi/nCov-model
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmarkov-naive.py
198 lines (150 loc) · 5.29 KB
/
markov-naive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import sys
import os
import matplotlib.pyplot as plt
class Markov_naive():
parameters = {
"beta_1" : 0.1, # infection rate/day of symptomatic
"beta_2" : 0.3, # infection rate/day of asymptomatic
"beta_4" : 0.01, # infection rate/day of isolated
"gamma_1" : 0.1, # isolation percent/day of asymptomatic
"gamma_2" : 0.8, # isolation percent/day of symptomatic
"gamma_start" : 10, # first day to start isolation and medical treatment
"alpha_1_start" : 14, # fisrt day to have self-cured
"alpha_1" : 0.07, # rate/day of self-cured
"alpha_2_start" : 12, # fisrt day to have medical-cured after isolation
"alpha_2" : 0.1, # rate/day of medical-cured
"alpha_3_start" : 10, # first day to have death
"alpha_3" : 0.02, # rate/day of death
"beta_3_start" : 3, # first day to have symptomatic
"beta_3" : 0.3 # rate/day of asymptomatic to symptomatic
}
initial_population = {
"N" : 10000, # total
"A" : 9900, # common susceptible
"B" : 100, # asymptomatic
"C" : 0, # symptomatic
"D" : 0, # isolated / medical interventional
"E" : 0, # recovered / have antibodies
"F" : 0 # dead
}
def __init__(self, parameters=None, initial_population=None):
if parameters is not None and initial_population is not None:
self.check_population(initial_population)
self.check_parameters(parameters)
if initial_population["B"] == 0 and initial_population["C"] == 0:
raise ValueError("There should be B or C people in initial population !")
if initial_population["A"] == 0:
raise ValueError("Initial population should have susceptible (A) !")
self.init_population = initial_population.copy()
self.param = parameters.copy()
else:
self.init_population = Markov_naive.initial_population
self.param = Markov_naive.parameters
self.initial_population["NewCase"] = 0
self.history = {0:self.init_population} # {t : population, ...}
def check_population(self, population):
t1 = population["A"] + population["B"] + population["C"] + population["D"] + population["E"]
t2 = population["N"]
if abs(t2-t1) > 1e-3:
raise RuntimeError("The population is not self consistent !")
def check_parameters(self, parameters):
if parameters["alpha_1"] + parameters["beta_3"] + parameters["gamma_1"] > 1:
raise ValueError("ERR 1 !")
if parameters["alpha_2"] + parameters["alpha_3"] > 1:
raise ValueError("ERR 2 !")
if parameters["gamma_2"] > 1:
raise ValueError("ERR 3 !")
def __gaussian(self, mu, sigma, t):
return 1/sqrt(2*np.pi*sigma) * np.exp(-(t-mu)**2/sigma**2)
'''
def alpha_1(self, t):
return self.__gaussian(self.param["alpha_1_mu"], self.param["alpha_1_sg"], t)
def alpha_2(self, t):
return self.param["alpha_2_hi"] * self.__gaussian(self.param["alpha_2_mu"], self.param["alpha_2_sg"], t)
def alpha_3(self, t):
return (1-self.param["alpha_2_hi"]) * self.__gaussian(self.param["alpha_3_mu"], self.param["alpha_3_sg"], t)
def beta_3(self, t):
return self.__gaussian(self.param["beta_3_mu"], self.param["beta_3_sg"], t)
'''
def running(self, days=100):
for tmp in range(days):
t = tmp + 1
pl = self.history[t-1].copy()
#beta_3 = self.beta_3(t)
#alpha_1 = self.alpha_1(t)
#alpha_2 = self.alpha_2(t)
#alpha_3 = self.alpha_3(t)
if t >= self.param["gamma_start"]:
gamma_1 = self.param["gamma_1"]
gamma_2 = self.param["gamma_2"]
else:
gamma_1 = 0
gamma_2 = 0
if t >= self.param["alpha_1_start"]:
alpha_1 = self.param["alpha_1"]
else:
alpha_1 = 0
if t >= self.param["alpha_2_start"] + self.param["gamma_start"]:
alpha_2 = self.param["alpha_2"]
else:
alpha_2 = 0
if t >= self.param["alpha_3_start"]:
alpha_3 = self.param["alpha_3"]
else:
alpha_3 = 0
if t >= self.param["beta_3_start"]:
beta_3 = self.param["beta_3"]
else:
beta_3 = 0
for i in range(100):
dt = 1/100
dA = - self.param["beta_1"] * pl["C"] * pl["A"] / pl["N"] \
- self.param["beta_2"] * pl["B"] * pl["A"] / pl["N"] \
- self.param["beta_4"] * pl["D"] * pl["A"] / pl["N"]
dB = - dA - alpha_1 * pl["B"] \
- gamma_1 * pl["B"] - beta_3 * pl["B"]
dC = beta_3 * pl["B"] - gamma_2 * pl["C"]
dD = gamma_1 * pl["B"] + gamma_2 * pl["C"] \
- alpha_2 * pl["D"] - alpha_3 * pl["D"]
dE = alpha_1 * pl["B"] + alpha_2 * pl["D"]
dF = alpha_3 * pl["D"]
pl["A"] += dA * dt
pl["B"] += dB * dt
pl["C"] += dC * dt
pl["D"] += dD * dt
pl["E"] += dE * dt
pl["F"] += dF * dt
pl["NewCase"] = -dA * dt
self.history[t] = pl
if pl["A"] < 0:
pl["B"] -= (0 - pl["A"])
pl["A"] = 0
if __name__ == '__main__':
model = Markov_naive()
model.running(100)
plh = model.history
t = list(plh.keys())
A = []
BC = []
newBC = []
D = []
E = []
F = []
for k,v in plh.items():
A.append(v["A"])
BC.append(v["B"]+v["C"]+v["D"])
newBC.append(v["NewCase"])
D.append(v["D"])
E.append(v["E"])
F.append(v["F"])
plt.plot(t, A, 'b')
plt.plot(t, BC, 'r')
plt.plot(t, D, 'y')
plt.plot(t, E, 'g')
plt.plot(t, F, 'k')
#plt.plot(t, newBC, 'm')
plt.legend(["susceptible", "infected", "quarantined", "recovered", "dead"])
#plt.legend(["isolated","new-case"])
plt.xlabel("Days")
plt.ylabel("Counts")
plt.show()