forked from HKUST-Aerial-Robotics/SIMPL
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_ddp.py
211 lines (176 loc) · 9.11 KB
/
train_ddp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import os
import sys
import time
import copy
import subprocess
from typing import Any, Dict, List, Tuple, Union
from datetime import datetime
import argparse
import faulthandler
from tqdm import tqdm
import numpy as np
#
import torch
from torch.utils.data import DataLoader
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
#
from loader import Loader
from utils.logger import Logger
from utils.utils import AverageMeterForDict
from utils.utils import save_ckpt, set_seed, str2bool, distributed_mean
def parse_arguments() -> Any:
"""Arguments for running the baseline.
Returns:
parsed arguments
"""
parser = argparse.ArgumentParser()
parser.add_argument("--mode", default="train", type=str, help="Mode, train/val/test")
parser.add_argument("--features_dir", required=True, default="", type=str, help="Path to the dataset")
parser.add_argument("--train_batch_size", type=int, default=16, help="Training batch size")
parser.add_argument("--val_batch_size", type=int, default=16, help="Val batch size")
parser.add_argument("--train_epoches", type=int, default=10, help="Number of epoches for training")
parser.add_argument("--val_interval", type=int, default=5, help="Validation intervals")
parser.add_argument("--data_aug", action="store_true", help="Enable data augmentation")
parser.add_argument("--seed", type=int, default=42, help="Random seed")
parser.add_argument("--use_cuda", action="store_true", help="Use CUDA for acceleration")
parser.add_argument("--logger_writer", action="store_true", help="Enable tensorboard")
parser.add_argument("--adv_cfg_path", required=True, default="", type=str)
parser.add_argument("--rank_metric", required=False, type=str, default="brier_fde_k", help="Ranking metric")
parser.add_argument("--resume", action="store_true", help="Resume training")
parser.add_argument("--no_pbar", action="store_true", help="Hide progress bar")
parser.add_argument("--model_path", required=False, type=str, help="path to the saved model")
return parser.parse_args()
def main():
args = parse_arguments()
faulthandler.enable()
start_time = time.time()
local_rank = int(os.environ['LOCAL_RANK'])
set_seed(args.seed + local_rank)
torch.cuda.set_device(local_rank)
dist.init_process_group(backend='nccl')
device = torch.device("cuda", local_rank)
world_size = dist.get_world_size()
is_main = True if local_rank == 0 else False
date_str = datetime.now().strftime("%Y%m%d-%H%M%S")
log_dir = "log/" + date_str
logger = Logger(date_str=date_str, enable=is_main, log_dir=log_dir,
enable_flags={'writer': args.logger_writer, 'mailbot': False})
logger.print(args)
# log basic info
logger.log_basics(args=args, datetime=date_str)
loader = Loader(args, device, is_ddp=True, world_size=world_size, local_rank=local_rank, verbose=is_main)
if args.resume:
logger.print('[Resume] Loading state_dict from {}'.format(args.model_path))
loader.set_resmue(args.model_path)
(train_set, val_set), net, loss_fn, optimizer, evaluator = loader.load()
train_sampler = torch.utils.data.distributed.DistributedSampler(train_set)
dl_train = DataLoader(train_set,
batch_size=args.train_batch_size,
num_workers=48,
collate_fn=train_set.collate_fn,
drop_last=True,
sampler=train_sampler,
pin_memory=True)
val_sampler = torch.utils.data.distributed.DistributedSampler(val_set)
dl_val = DataLoader(val_set,
batch_size=args.val_batch_size,
num_workers=48,
collate_fn=val_set.collate_fn,
drop_last=True,
sampler=val_sampler,
pin_memory=True)
niter = 0
best_metric = 1e6
rank_metric = args.rank_metric
net_name = loader.network_name()
for epoch in range(args.train_epoches):
dist.barrier() # sync
logger.print('\nEpoch {}'.format(epoch))
torch.cuda.empty_cache()
torch.cuda.reset_peak_memory_stats()
# * Train
dl_train.sampler.set_epoch(epoch)
epoch_start = time.time()
train_loss_meter = AverageMeterForDict()
train_eval_meter = AverageMeterForDict()
net.train()
for i, data in enumerate(tqdm(dl_train, disable=(not is_main) or args.no_pbar, ncols=80)):
data_in = net.module.pre_process(data)
out = net(data_in)
loss_out = loss_fn(out, data)
post_out = net.module.post_process(out)
eval_out = evaluator.evaluate(post_out, data)
optimizer.zero_grad()
loss_out['loss'].backward()
lr = optimizer.step()
train_loss_meter.update(loss_out)
train_eval_meter.update(eval_out)
niter += world_size * args.train_batch_size
logger.add_dict(loss_out, niter, prefix='train/')
# print('epoch: {}, lr: {}'.format(epoch, lr))
optimizer.step_scheduler()
max_memory = torch.cuda.max_memory_allocated(device=device) // 2 ** 20
loss_avg = train_loss_meter.metrics['loss'].avg
logger.print('[Training] Avg. loss: {:.6}, time cost: {:.3} mins, lr: {:.3}, peak mem: {} MB'.
format(loss_avg, (time.time() - epoch_start) / 60.0, lr, max_memory))
logger.print('-- ' + train_eval_meter.get_info())
logger.add_scalar('train/lr', lr, it=epoch)
logger.add_scalar('train/max_mem', max_memory, it=epoch)
for key, elem in train_eval_meter.metrics.items():
logger.add_scalar(title='train/{}'.format(key), value=elem.avg, it=epoch)
dist.barrier() # sync
if ((epoch + 1) % args.val_interval == 0) or epoch > int(args.train_epoches / 2):
# * Validation
with torch.no_grad():
val_start = time.time()
dl_val.sampler.set_epoch(epoch)
val_loss_meter = AverageMeterForDict()
val_eval_meter = AverageMeterForDict()
net.eval()
for i, data in enumerate(tqdm(dl_val, disable=(not is_main) or args.no_pbar, ncols=80)):
data_in = net.module.pre_process(data)
out = net(data_in)
loss_out = loss_fn(out, data)
post_out = net.module.post_process(out)
eval_out = evaluator.evaluate(post_out, data)
val_loss_meter.update(loss_out)
val_eval_meter.update(eval_out)
# make eval results into a Tensor
eval_res = [elem.avg for k, elem in val_eval_meter.metrics.items()]
eval_res = torch.from_numpy(np.array(eval_res)).to(device)
val_eval_mean = distributed_mean(eval_res)
val_eval = dict()
for i, key in enumerate(list(val_eval_meter.metrics.keys())):
val_eval[key] = val_eval_mean[i].item()
val_eval_meter.reset()
val_eval_meter.update(val_eval)
logger.print('[Validation] Avg. loss: {:.6}, time cost: {:.3} mins'.format(
val_loss_meter.metrics['loss'].avg, (time.time() - val_start) / 60.0))
logger.print('-- ' + val_eval_meter.get_info())
for key, elem in val_loss_meter.metrics.items():
logger.add_scalar(title='val/{}'.format(key), value=elem.avg, it=epoch)
for key, elem in val_eval_meter.metrics.items():
logger.add_scalar(title='val/{}'.format(key), value=elem.avg, it=epoch)
if is_main:
if val_eval_meter.metrics[rank_metric].avg < best_metric:
model_name = date_str + '_{}_ddp_best.tar'.format(net_name)
save_ckpt(net.module, optimizer, epoch, 'saved_models/', model_name)
best_metric = val_eval_meter.metrics[rank_metric].avg
logger.print('Save the model: {}, {}: {:.4}, epoch: {}'.format(
model_name, rank_metric, best_metric, epoch))
if is_main:
if int(100 * epoch / args.train_epoches) in [20, 40, 60, 80] or (epoch > int(args.train_epoches * 0.8)):
model_name = date_str + '_{}_ddp_ckpt_epoch{}.tar'.format(net_name, epoch)
save_ckpt(net.module, optimizer, epoch, 'saved_models/', model_name)
logger.print('Save the model to {}'.format('saved_models/' + model_name))
logger.print("\nTraining completed in {:.2f} mins".format((time.time() - start_time) / 60.0))
if is_main:
# save trained model
model_name = date_str + '_{}_ddp_epoch{}.tar'.format(net_name, args.train_epoches)
save_ckpt(net.module, optimizer, epoch, 'saved_models/', model_name)
logger.print('Save the model to {}'.format('saved_models/' + model_name))
dist.destroy_process_group()
logger.print('\nExit...\n')
if __name__ == "__main__":
main()