-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathnucleotide_for_aa.py
285 lines (264 loc) · 9.88 KB
/
nucleotide_for_aa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
'''
Most of what is in here was used in 2017 but I am moving over to a different process in 2019 that will
be a little more aware. See 'codon_aa_substitutions.py'.
'''
from phylogeny_utilities.utilities import *
import subprocess as sp
import sys
from multiprocessing import Pool
nproc = 20
codon_lookup = {'GCT':'A','GCC':'A','GCA':'A','GCG':'A','CGT':'R','CGC':'R','CGA':'R','CGG':'R',
'AGA':'R','AGG':'R','AAT':'N','AAC':'N','GAT':'D','GAC':'D','TGT':'C','TGC':'C',
'CAA':'Q','CAG':'Q','GAA':'E','GAG':'E','GGT':'G','GGC':'G','GGA':'G','GGG':'G',
'CAT':'H','CAC':'H','ATT':'I','ATC':'I','ATA':'I','TTA':'L','TTG':'L','CTT':'L',
'CTC':'L','CTA':'L','CTG':'L','AAA':'K','AAG':'K','ATG':'M','TTT':'F','TTC':'F',
'CCT':'P','CCC':'P','CCA':'P','CCG':'P','TCT':'S','TCC':'S','TCA':'S','TCG':'S',
'AGT':'S','AGC':'S','ACT':'T','ACC':'T','ACA':'T','ACG':'T','TGG':'W','TAT':'Y',
'TAC':'Y','GTT':'V','GTC':'V','GTA':'V','GTG':'V','TAA':'(stop)','TGA':'(stop)',
'TAG':'(stop)','TRA':'(stop)','TAR':'(stop)'}
reverse_lookup = { 'F': 'TT*',
'L': '*T*',
'I': 'AT*',
'M': 'ATG',
'V': 'GT*',
'S': 'TC*',
'P': 'CC*',
'T': 'AC*',
'A': 'GC*',
'Y': 'TA*',
'H': 'CA*',
'Q': 'CA*',
'N': 'AA*',
'K': 'AA*',
'D': 'GA*',
'E': 'GA*',
'C': 'TG*',
'W': 'TGG',
'R': '*G*',
'G': 'GG*' #Serine has been assumed here to be one of the TC* codongs but it asly has AG*
}
# def string_aa_to_nukes(aa_aln, nuc_raw):
# out_str = ''
# len_aa = len(aa_aln.replace('-',''))
# err_ct = 0
# # if len(nuc_raw)/3==len_aa+1:
# # stop_missing = False
# # else:
# # print 'lengths of strings do not add up: AA length = %s, nuke length = %s (%s)' % (len_aa, len(nuc_raw), len(nuc_raw)/3)
# # if len(nuc_raw)/3==len_aa and nuc_raw[0:3].upper() in ['ATG','GTG']:
# # print '\tassuming stop codon is missing, moving on...'
# # stop_missing = True
# # else:
# # print 'not plausibly a stop codon issue, terminating...'
# # return False, 0
# position = 0
# for i in range(len(aa_aln)):
# if aa_aln[i]=='-':
# out_str += '---'
# else:
# nuc_temp = nuc_raw[(position*3):(position*3+3)].upper()
# if nuc_temp in codon_lookup.keys() and codon_lookup[nuc_temp]<>aa_aln[i].upper():
# err_ct += 1
# # print 'amino acid at position %s (%s) does not match codon %s' % (position, aa_aln[i],nuc_temp)
# # return False
# out_str += nuc_temp
# position += 1
# if not stop_missing:
# last_codon=nuc_raw[-3:].upper()
# if codon_lookup[last_codon]<>'(stop)':
# err_ct += 1
# print 'final codon (%s) is not a stop codon (err ct %s)' % (last_codon, err_ct)
# # return False
# out_str += last_codon
# else:
# out_str += '---'
# # if err_ct > 0:
# # print 'error count: %s' % err_ct
# return out_str, err_ct
def string_aa_to_nukes(aa_aln, nuc_raw):
'''
takes an aligned amino acid string and an unaligned corresponding nucleotide sting and returns
the aligned version of the nucleotide string
:param aa_aln:
:param nuc_raw:
:return:
'''
out_str = ''
pseudo_gene = get_pseudo_nuke_string_from_aa(aa_aln.replace('-',''))
p = sp.Popen(['/projects/tallis/nute/code/misc_c_utilities/nw'], stdin=sp.PIPE, stdout=sp.PIPE, stderr=sp.PIPE)
instr = pseudo_gene + '\n' + nuc_raw + '\n'
ps_out = p.communicate(input=instr)
ps_out_l = ps_out[0].strip().split('\t')
pseudo_gene_aln = ps_out_l[0]
nuke_aln = ps_out_l[1]
# aa_position = 0
pseudo_gene_position=0
while (pseudo_gene_aln[pseudo_gene_position]=='-'):
pseudo_gene_position += 1
def get_pseudo_gene_next(curr_pos):
ct = 0
marker = curr_pos
while (ct < 3):
if pseudo_gene_aln[marker]!='-':
ct += 1
marker += 1
return marker
for i in range(len(aa_aln)):
if aa_aln[i]=='-':
out_str += '---'
else:
fr = pseudo_gene_position
to = get_pseudo_gene_next(fr)
out_str += nuke_aln[fr:to]
pseudo_gene_position = to
if len(nuke_aln)>pseudo_gene_position:
out_str += nuke_aln[(pseudo_gene_position-1):]
return out_str
def get_pseudo_nuke_string_from_aa(aminostring):
'''
:param aminostring:
:return:
'''
out_str = ''
for i in range(len(aminostring)):
if aminostring[i] in reverse_lookup.keys():
out_str += reverse_lookup[aminostring[i]]
else:
out_str += '***'
return out_str
def make_nuke_alignment_from_aa(aminofile, nucfile, nuc_aligned_out):
mypool=Pool(20)
aa = read_from_fasta(aminofile)
nuc_raw = read_from_fasta(nucfile)
if len(aa.keys())!=len(nuc_raw.keys()):
print ('Sequence counts do not match between files: %s in AA file, %s in nucleotide file...' % (len(aa.keys()),len(nuc_raw.keys())))
mm_names =len(set(aa.keys()).symmetric_difference(set(nuc_raw.keys())))
if mm_names!=0:
# print 'Sequence names are not exactly the same between files: %s names in only one file...terminating'
intersect_keys = list(set(aa.keys()).intersection(set(nuc_raw.keys())))
print('Sequence names are not exactly the same between files. Output will match the intersection of the two.')
out_nuc = dict.fromkeys(intersect_keys)
else:
out_nuc = dict.fromkeys(aa.keys())
seq_ct = len(out_nuc.keys())
print ('total of %s sequences' % seq_ct)
ct = 0
arglist = []
for k in out_nuc.keys():
# ec = 0
arglist.append((aa[k],nuc_raw[k],k))
# newstr = string_aa_to_nukes(aa[k],nuc_raw[k])
print ('starting pool....')
res = mypool.map(string_aa_to_nukes_intermediate,arglist)
print ('\t\t...done running pool')
for i in range(len(arglist)):
k=arglist[i][2]
if res[i] == False:
print ('error occured on key %s...terminating' % k)
return False
out_nuc[k] = res[i]
# ct +=1
# if ct % 10000 == 0:
# print '%s done' % ct
maxlen = max(map(len,out_nuc.values()))
print ("max length: %s" % maxlen)
for i in out_nuc.keys():
leni = len(out_nuc[i])
out_nuc[i] += '-'*(maxlen-leni)
print ("min length: %s" % min(list(map(len,out_nuc.values()))))
# assert min(map(len,out_nuc.values()))==max(map(len,out_nuc.values())), 'final fasta does not all have same values'
write_to_fasta(nuc_aligned_out, out_nuc)
def string_aa_to_nukes_intermediate(args):
return string_aa_to_nukes(args[0],args[1])
def trim_fastas(fna, faa):
cnu = read_from_fasta(fna)
caa = read_from_fasta(faa)
removal = []
ct = 0
for i in cnu.keys():
if len(cnu[i])>1000000:
removal.append(i)
ct += 1
if ct>0:
print 'removing %s sequences: %s' % (ct,removal)
ks = cnu.keys()
for j in removal:
ks.pop(ks.index(j))
write_to_fasta(fna, cnu, ks)
write_to_fasta(faa, caa, ks)
def split_bimodal_aligments():
splits={'COG0012':1120,
'COG0016':1020,
'COG0018':1710,
'COG0048':None,
'COG0049':None,
'COG0052':800,
'COG0080':460,
'COG0081':None,
'COG0085':3900,
'COG0087':600,
'COG0088':630,
'COG0090':800,
'COG0091':500,
'COG0092':775,
'COG0093':380,
'COG0094':550,
'COG0096':None,
'COG0097':None,
'COG0098':550,
'COG0099':400,
'COG0100':400,
'COG0102':None,
'COG0103':430,
'COG0124':1400,
'COG0172':1325,
'COG0184':300,
'COG0185':300,
'COG0186':300,
'COG0197':430,
'COG0200':400,
'COG0201':1400,
'COG0202':850,
'COG0215':1500,
'COG0256':400,
'COG0495':2750,
'COG0522':610,
'COG0525':None,
'COG0533':1500,
'COG0541':1500,
'COG0552':1375}
for k in splits.keys():
if splits[k] is None:
continue
sp = int(float(splits[k])/3.)
fa = read_from_fasta(k + '.faa')
fa_sm = {}
fa_lg = {}
for seq in fa.keys():
if len(fa[seq])>sp:
fa_lg[seq] = fa[seq]
else:
fa_sm[seq] = fa[seq]
write_to_fasta('bimodal_split/' + k + '_large.faa',fa_lg)
write_to_fasta('bimodal_split/' + k + '_small.faa', fa_sm)
del fa
del fa_sm
del fa_lg
if __name__=='__main__':
if len(sys.argv)<4:
aafi = '-h'
nucfi = ''
outfi = ''
else:
aafi = sys.argv[1]
nucfi = sys.argv[2]
outfi = sys.argv[3]
if '-h' in [aafi, nucfi, outfi]:
print ('''
Script to convert an aligned amino acid fasta file to an aligned nucleotide file on a codon-by-codon basis
given corresponding raw files. Does NOT check that codons and amino acids match perfectly.
usage: python nucleotide_for_aa.py <amino_acid_fasta> <nucleotide_fasta> <output_fasta>''')
sys.exit(0)
else:
make_nuke_alignment_from_aa(aafi,nucfi,outfi)
# print '%s\n%s\n%s' % (aafi, nucfi, outfi)