Releases: MLBazaar/MLPrimitives
Releases · MLBazaar/MLPrimitives
v0.2.3 - 2019-11-14
New Primitives
Add primitive to make window_sequences based on cutoff times - Issue #217 by @csala
Create a keras LSTM based TimeSeriesClassifier primitive - Issue #218 by @csala
Add pandas DataFrame primitives - Issue #214 by @csala
Add featuretools.EntitySet.normalize_entity primitive - Issue #209 by @csala
Primitive Improvements
Make featuretools.EntitySet.entity_from_dataframe entityset arg optional - Issue #208 by @csala
Add text regression dataset - Issue #206 by @csala
Bug Fixes
pandas.DataFrame.resample crash when grouping by integer columns - Issue #211 by @csala
v0.2.2 - 2019-10-08
New Primitives
- Add primitives for GAN based time-series anomaly detection - Issue #200 by @AlexanderGeiger
- Add
numpy.reshape
andnumpy.ravel
primitives - Issue #197 by @AlexanderGeiger - Add feature selection primitive based on Lasso - Issue #194 by @csala
Primitive Improvements
feature_extraction.CategoricalEncoder
support dtype category - Issue #196 by @csala
v0.2.1 - 2019-09-09
New Primitives
- Timeseries Intervals to Mask Primitive - Issue #186 by @AlexanderGeiger
- Add new primitive: Arima model - Issue #168 by @AlexanderGeiger
Primitive Improvements
- Curate PCA primitive hyperparameters - Issue #190 by @AlexanderGeiger
- Add option to drop rolling window sequences - Issue #186 by @AlexanderGeiger
Bug Fixes
- scikit-image==0.14.3 crashes when installed on Mac - Issue #188 by @csala
v0.2.0 - 2019-07-11
New Features
- Publish the pipelines as an
entry_point
Issue #175 by @csala
Primitive Improvements
- Improve pandas.DataFrame.resample primitive Issue #177 by @csala
- Improve
feature_extractor
primitives Issue #183 by @csala - Improve
find_anomalies
primitive Issue #180 by @AlexanderGeiger
Bug Fixes
- Typo in the primitive keras.Sequential.LSTMTimeSeriesRegressor Issue #176 by @DanielCalvoCerezo
v0.1.10
New Features
New Pipelines
- Add pipelines for all the MLBlocks examples Issue #162 by @csala
Primitive Improvements
- Add Early Stopping to
keras.Sequential.LSTMTimeSeriesRegressor
primitive Issue #156 by @csala - Make FeatureExtractor primitives accept Numpy arrays Issue #165 by @csala
- Add window size and pruning to the
timeseries_anomalies.find_anomalies
primitive Issue #160 by @csala
v0.1.9
New Features
- Add a single table binary classification dataset Issue #141 by @csala
New Primitives
- Add Multilayer Perceptron (MLP) primitive for binary classification Issue #140 by @Hector-hedb12
- Add primitive for Sequence classification with LSTM Issue #150 by @Hector-hedb12
- Add VGG-like convnet primitive Issue #149 by @Hector-hedb12
- Add Multilayer Perceptron (MLP) primitive for multi-class softmax classification Issue #139 by @Hector-hedb12
- Add primitive to count feature matrix columns Issue #146 by @csala
Primitive Improvements
- Add additional fit and predict arguments to keras.Sequential Issue #161 by @csala
- Add suport for keras.Sequential Callbacks Issue #159 by @csala
- Add fixed hyperparam to control keras.Sequential verbosity Issue #143 by @csala
v0.1.8
v0.1.7
General Improvements
- Validate JSON format in
make lint
- Issue #133 - Add demo datasets - Issue #131
- Improve featuretools.dfs primitive - Issue #127
New Primitives
- pandas.DataFrame.resample - Issue #123
- pandas.DataFrame.unstack - Issue #124
- featuretools.EntitySet.add_relationship - Issue #126
- featuretools.EntitySet.entity_from_dataframe - Issue #126
Bug Fixes
- Bug in timeseries_anomalies.py - Issue #119
v0.1.6
General Improvements
- Add Contributing Documentation
- Remove upper bound in pandas version given new release of
featuretools
v0.6.1 - Improve LSTMTimeSeriesRegressor hyperparameters
New Primitives
- mlprimitives.candidates.dsp.SpectralMask
- mlprimitives.custom.timeseries_anomalies.find_anomalies
- mlprimitives.custom.timeseries_anomalies.regression_errors
- mlprimitives.custom.timeseries_preprocessing.rolling_window_sequences
- mlprimitives.custom.timeseries_preprocessing.time_segments_average
- sklearn.linear_model.ElasticNet
- sklearn.linear_model.Lars
- sklearn.linear_model.Lasso
- sklearn.linear_model.MultiTaskLasso
- sklearn.linear_model.Ridge
v0.1.5
New Primitives
- sklearn.impute.SimpleImputer
- sklearn.preprocessing.MinMaxScaler
- sklearn.preprocessing.MaxAbsScaler
- sklearn.preprocessing.RobustScaler
- sklearn.linear_model.LinearRegression
General Improvements
- Separate curated from candidate primitives
- Setup
entry_points
in setup.py to improve compaitibility with MLBlocks - Add a test-pipelines command to test all the existing pipelines
- Clean sklearn example pipelines
- Change the
author
entry to acontributors
list - Change the name of
mlblocks_primitives
folder - Fix installation instructions