-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathget_data.py
46 lines (45 loc) · 1.62 KB
/
get_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
from PIL import Image
import numpy as np
import cv2
import os.path as osp
import os
import sys
import torch
from torchvision import datasets, transforms
class Getdata(torch.utils.data.Dataset):
def __init__(self):
self.transform_norm=transforms.Compose([transforms.ToTensor()])
self.transform_tensor= transforms.ToTensor()
root = './dataset/CLWD/train/'
self.imageJ_path=osp.join(root,'Watermarked_image','%s.jpg')
self.imageI_path=osp.join(root,'Watermark_free_image','%s.jpg')
self.mask_path=osp.join(root,'Mask','%s.png')
self.balance_path=osp.join(root,'Loss_balance','%s.png')
self.alpha_path=osp.join(root,'Alpha','%s.png')
self.W_path=osp.join(root,'Watermark','%s.png')
self.root = root
self.transform= transforms
self.ids = list()
for file in os.listdir(root+'/Watermarked_image'):
#if(file[:-4]=='.jpg'):
self.ids.append(file.strip('.jpg'))
def __getitem__(self,index):
imag_J,image_I,mask,balance,alpha,w=self.pull_item(index)
return imag_J,image_I,mask,balance,alpha,w
def __len__(self):
return len(self.ids)
def pull_item(self,index):
img_id = self.ids[index]
img_J=Image.open(self.imageJ_path%img_id)
img_I=Image.open(self.imageI_path%img_id)
mask = Image.open(self.mask_path%img_id)
balance = Image.open(self.balance_path%img_id)
alpha = Image.open(self.alpha_path%img_id)
w = Image.open(self.W_path%img_id)
img_source = self.transform_norm(img_J)
image_target = self.transform_norm(img_I)
w=self.transform_norm(w)
alpha=self.transform_tensor(alpha)
mask=self.transform_tensor(mask)
balance = self.transform_tensor(balance)
return img_source,image_target,mask,balance,alpha,w