-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathtrain.py
82 lines (63 loc) · 2.23 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import numpy as np
import os
import sys
import tensorflow as tf
from keras import backend as K
from keras.callbacks import TensorBoard
from keras.optimizers import RMSprop
from sklearn.metrics import roc_auc_score
from data import augment, train_data, test_data
from model import multitask_cnn, loss_dict, loss_weights_dict
checkpoints_dir = "/data/test/checkpoints/"
logs_dir = "/data/test/logs/"
batch_size = 128
epochs = 250
base_lr = 0.001
def train():
if not os.path.exists(checkpoints_dir):
os.makedirs(checkpoints_dir)
if not os.path.exists(logs_dir):
os.makedirs(logs_dir)
X_train, y_train = train_data()
X_test, y_test = test_data()
print("Training and validation data processed.")
model = multitask_cnn()
optimizer = RMSprop(lr=base_lr)
model.compile(
optimizer=optimizer,
loss=loss_dict,
loss_weights=loss_weights_dict,
metrics=["accuracy"],
)
training_log = TensorBoard(log_dir=os.path.join(logs_dir, "log"), write_graph=False)
callbacks = [training_log]
for e in range(epochs):
X_train_augmented = augment(X_train)
model.fit(
{"thyroid_input": X_train_augmented},
y_train,
validation_data=(X_test, y_test),
batch_size=batch_size,
epochs=e + 1,
initial_epoch=e,
shuffle=True,
callbacks=callbacks,
)
if np.mod(e + 1, 10) == 0:
y_pred = model.predict(X_train, batch_size=batch_size, verbose=1)
auc_train = roc_auc_score(y_train["out_cancer"], y_pred[0])
y_pred = model.predict(X_test, batch_size=batch_size, verbose=1)
auc_test = roc_auc_score(y_test[0], y_pred[0])
with open(os.path.join(logs_dir, "auc.txt"), "a") as auc_file:
auc_file.write("{},{}\n".format(auc_train, auc_test))
model.save(os.path.join(checkpoints_dir, "weights.h5"))
print("Training completed.")
if __name__ == "__main__":
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
sess = tf.Session(config=config)
K.set_session(sess)
device = "/gpu:" + sys.argv[1]
with tf.device(device):
train()