forked from CGAL/cgal-web
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFAQ.html
742 lines (656 loc) · 38.2 KB
/
FAQ.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
---
layout: page
title: Frequently Asked Questions
header: Frequently Asked Questions</H1>
group: navigation
---
{% include JB/setup %}
<UL>
<LI> <A HREF="#general">General Information</A>
<UL>
<LI> <A HREF="#what_is_cgal">What is CGAL?</A>
<LI> <A HREF="#who_is_cgal">Who is involved in CGAL?</A>
<LI> <A HREF="#cgal_logo">How did you make the CGAL logo?</A>
<LI> <A HREF="#cgal_pronounce">How do you pronounce CGAL?</A>
<LI> <A HREF="#examples_and_demos">
Are there example/demo programs somewhere?</A>
<LI> <A HREF="#cgal_discuss">Is there a mailing list for users?</A>
<LI> <A HREF="#bug_reporting">I think I have encountered a bug in
CGAL. What should I do?</A>
<LI> <A HREF="#oldreleases">Where do I find old releases of CGAL?</A>
</UL>
<LI> <A HREF="#installation">Installation and Compilation</A>
<UL>
<LI> <A HREF="#how_to_install">How do I install CGAL?</A>
<LI> <A HREF="#how_to_compile">How do I compile a program using CGAL?</A>
<LI> <A HREF="#debian_packages">Are there packages for Debian / Ubuntu available?</A>
<LI> <A HREF="#debian_demos">How do I compile and execute the demos and examples on Debian / Ubuntu?</A>
<LI> <A HREF="#is_vc6_supported">Is VC++ 6 supported?</A>
<LI> <A HREF="#qt">Which versions of Qt are supported?</A>
<LI> <A HREF="#mac_optimization_bug">Why do I get errors when using compiler optimization on Mac OS X?</A>
<LI> <A HREF="#compilation_speed">How to reduce compilation time of programs using CGAL ?</A>
</UL>
<LI> <A HREF="#kernels">Kernels and Number Types</A>
<UL>
<LI> <A HREF="#which_kernel">CGAL offers many different kernels
templates. Which is the right one for my program?</A>
<LI> <A HREF="#which_NT">What is the right number type for my
program?</A>
<LI> <A HREF="#predicates_vs_constructions">
What is the difference between a predicate and a construction
and why does this make a difference for the robustness of my
program?</A>
<LI> <A HREF="#inexact_NT">I am using <TT>double</TT> (or
<TT>float</TT> or ...) as my number type
and get assertion failures or incorrect output. Is this a
bug in CGAL?</A>
<LI> <A HREF="#modifiable_kernel">I want to modify the coordinates
of a point or the endpoints of a segment, but the CGAL kernel
does not seem to support that. Why?</A>
<LI> <A HREF="#to_double">I want to convert a number type, e.g.
<TT>FT</TT> to <TT>double</TT>. How do I do that?</A>
<LI> <A HREF="#uncertain_exception">My program reports "Microsoft C++ exception: CGAL::Uncertain_conversion_exception at memory location ...". Why?</A>
</UL>
<LI> <A HREF="#polygons">Polygons</A>
<UL>
<LI> <A HREF="#boolean_ops">How can I do boolean operations on
polygons?</A>
<LI> <A HREF="#polygon_triangulation">How do I compute the
triangulation of the interior of a polygon?</A>
</UL>
<LI> <A HREF="#planar_maps">Planar Maps and Arrangements</A>
<UL>
<LI><a HREF="#planar_map_outer_face">
Is the outer CCB (counterclockwise boundary) of a face of an
arrangement a SIMPLE polygon?</a>
<LI><a HREF="#planar_map_bops">Boolean set operations:
How can I compute them?</a>
<LI><a HREF="#planar_map_faster">
How can I accelerate the work with arrangements?</a>
<li><a HREF="#planar_map_adding_info">
How can I attach information to a vertex, a halfedge,
or a face?</a>
</UL>
<LI> <A HREF="#polyhedron">Polyhedral Surfaces</A>
<UL>
<LI> <A HREF="#polyhedron_transform">Why is there no
<I>transform</I> function for <I>Polyhedron_3</I>?</A>
<LI> <A HREF="#polyhedron_examples">Where can I find examples of
polyhedral surfaces?</A>
<LI> <A HREF="#polyhedron_normals">How can I compute the plane
equation (normal) for a facet in a polyhedral surface?</A>
</UL>
</UL>
<A NAME="general"></A>
<HR>
<BR>
<FONT SIZE="+1"><B>General Information</B></FONT>
<UL>
<LI> <A NAME="what_is_cgal"></A>
<B>What is CGAL?</B>
<P>CGAL is an acronym for the <a href="/Manual/last/doc_html/cgal_manual/contents.html">Computational Geometry Algorithms Library</a>.
It is at the same time the short name for the <a href="opensource.html">CGAL Open
Source Project</a>. The goal of the project
is to provide <em>easy access to efficient and reliable geometric algorithms</em>
to users in industry and academia.
<P>
<LI> <A NAME="who_is_cgal"></A>
<B>Who is involved in CGAL?</B>
<p> For more information see the <A HREF="people.html">project members</A> and the
<a href="partners.html">partners and funding sources</a> pages.
<P>
<LI> <A NAME="cgal_logo"></A>
<B>How did you make the CGAL logo?</B>
<P>
See <a href="logo-design.html">this page</a> for information about the construction of the CGAL logo.
<P>
<LI> <A NAME="cgal_pronounce"></A>
<B>How do you pronounce CGAL?</B>
<p>CGAL is pronounced like "seagull" in English, or "cigale" in French.</p>
<LI> <A NAME="examples_and_demos"></A>
<B>Are there example/demo programs somewhere?</B>
<P>
Yes. The CGAL distribution includes two directories containing
example programs: <TT><CGALROOT>/examples/</TT> and
<TT><CGALROOT>/demo/</TT>. Here you find the source code and
makefiles for these programs. The current CGAL manual provides a nice
<a href="/Manual/last/doc_html/cgal_manual/packages.html">overview of packages</a>
from where you can also get the demo source code and Windows executables.
<P>
<LI> <A NAME="cgal_discuss"></A>
<B>Is there a mailing list for users?</B>
<P>
Yes. See the web page describing the CGAL <a href="mailing_list.html">mailing lists</a>.
<P>
<LI> <A NAME="bug_reporting"></A>
<B>I think I have encountered a bug in CGAL. What should I do?</B>
<P>
Please follow the <a href="bug_report.html">bug reporting instructions</a>.
<P>
<LI> <A NAME="oldreleases"></A>
<B>Where do I find old releases of CGAL?</B>
<P>All released files as well as manuals are available in the
<a href="https://github.com/CGAL/cgal/releases">release</a> section
of the CGAL GitHub repository.</P>
<P>
</UL>
<A NAME="installation"></A>
<HR>
<BR>
<FONT SIZE="+1"><B>Installation and Compilation</B></FONT>
<UL>
<LI> <A NAME="how_to_install"></A>
<B>How do I install CGAL?</B>
<P>
Please have a look at the <A HREF="https://doc.cgal.org/latest/Manual/general_intro.html">Installation Guide</A>.
<P>
<LI> <A NAME="how_to_compile"></A>
<B>How do I compile a program using CGAL?</B>
<P>
Please have a look at the <A HREF="https://doc.cgal.org/latest/Manual/general_intro.html">Installation Guide</A>.
<P>
<LI> <A NAME="debian_packages"></A>
<B>Are there packages for Debian / Ubuntu available?</B>
<P>Packages for Debian unstable (sid) are available from the official
Debian repository. Debian stable (stretch) and Debian testing (buster)
might not contain the latest version of CGAL. In that case, add</P>
<PRE> deb <A href="http://debian.cgal.org/">http://debian.cgal.org</A> stretch main
deb-src <A href="http://debian.cgal.org/">http://debian.cgal.org</A> stretch main</PRE>
or
<PRE> deb <A href="http://debian.cgal.org/">http://debian.cgal.org</A> buster main
deb-src <A href="http://debian.cgal.org/">http://debian.cgal.org</A> buster main</PRE>
to <TT>/etc/apt/sources.list</TT> (note that you only need the pair of lines
corresponding to the release you are using) and make sure that the package
<TT>apt-transport-https</TT> is installed. The packages are called
<TT>libcgal11v5</TT>, <TT>libcgal-dev</TT>, <TT>libcgal-qt5-11</TT>,
<TT>libcgal-qt5-dev</TT>, <TT>libcgal-demo</TT> and
<TT>libcgal-ipelets</TT>. Packages for older CGAL versions are available at
<A href="http://debian.cgal.org/archive/">http://debian.cgal.org/archive</A>
or from the official Debian archive.</P>
<P>The Ubuntu repository also contains packages for CGAL, but not
always for the latest version. The Debian packages might work on
Ubuntu as well.</P>
</LI>
<LI> <A NAME="debian_demos"></A>
<B>How do I compile and execute the demos and examples on Debian / Ubuntu?</B>
<P>Install the CGAL packages (see the preceding entry).
Unpack the examples and demos in some directory, e.g., <TT>$HOME/cgal</TT>.</P>
<PRE> $ mkdir $HOME/cgal
$ cd $HOME/cgal
$ tar xzf /usr/share/doc/libcgal-demo/examples.tar.gz
$ tar xzf /usr/share/doc/libcgal-demo/demo.tar.gz</PRE>
<P>Configure and build the desired examples or demos, e.g., the
demos of Triangulation_2.</P>
<PRE> $ cd demo/Triangulation_2
$ cmake .
$ make</PRE>
<P>Then run the demos.</P>
<PRE> $ ./Constrained_delaunay_triangulation_2 &
$ ./Delaunay_triangulation_2 &
$ ./Regular_triangulation_2 &</PRE>
<P>See also /usr/share/doc/libcgal11v5/README.Debian for more information.</P>
</LI>
<LI> <A NAME="is_vc6_supported"></A>
<B>Is Visual C++ 6 supported?</B>
<P>No, it is not and there is no hope that you can make the necessary
fixes yourself to get it running with this compiler.
The issue lies in the fact that VC6 did not support the template mechanism well
enough. The solution is to either use an old version of CGAL
or to upgrade to newer versions of the Microsoft compiler.</P>
<LI> <A NAME="qt"></A>
<B>Which versions of Qt are supported?</B>
<P>All the demos use Qt5. The 2D demos are based on the
<a href="http://www.cgal.org/Pkg/GraphicsView">GraphicsView framework</a>,
the 3D demos on the <a href="http://www.libqglviewer.com/">libQGLViewer</a>. </P>
<LI> <A NAME="mac_optimization_bug"></A>
<B>Why do I get errors when using compiler optimization on Mac OS X?</B>
<P>The default compiler on Mac OS X is g++ 4.0 (at least on Tiger and Leopard).
It has some bugs that are unfortunately encountered by some programs using
CGAL when optimizing.
We recommend that you use a more recent version of g++, such as g++ 4.2,
which you can get by upgrading to the latest XCode, or using Fink.
You can then select it by passing the following flags to CMake :
<tt>-DCMAKE_CXX_COMPILER=/usr/bin/g++-4.2 -DCMAKE_C_COMPILER=/usr/bin/gcc-4.2</tt></P>
<LI> <A NAME="compilation_speed"></A>
<B>How to reduce compilation time of programs using CGAL ?</B>
<P>CGAL is heavily using C++ templates, and this has an impact on
compilation speed. Here are some hints that can help speed up
compilation of programs using CGAL:
<UL>
<LI><em>Remove compiler debugging</em> options like <code>-g</code> if you can.
Indeed, generating debug information can be very costly for
template instantiations, both in terms of running time and
memory usage by the compiler tool chain.
<LI><em>Remove compiler optimization</em> options like <code>-O2</code> when
you do not need them, such as in the early steps of the development cycle of
your programs.
<LI><em>Regroup translation units</em> : if your program is composed of
many small translation units to be compiled and linked, try to
reduce their numbers by merging them. This traditional style
for C programs is actually very slow for programs heavily using C++ templates.
Regrouping them reduces the time spent by the compiler to parse
the header files, and avoids redundant template instantiations.
<LI><em>Precompile header files</em> : some compilers, such as GCC, provide
a feature named <a href="http://en.wikipedia.org/wiki/Precompiled_header">
precompiled headers</a>. This can be mostly useful if you can regroup in a
single header file most of the header files that you use, together with
most template instantiations. Refer to your compiler documentation to use this feature.
</UL>
</UL>
<A NAME="kernels"></A>
<HR>
<BR>
<FONT SIZE="+1"><B>Kernels and Number Types</B></FONT>
<UL>
<LI> <A NAME="which_kernel"></A>
<B>CGAL offers many different kernel templates. Which is the right
one for my program?</B>
<P>
There is no universal answer to this question (which is why there are
different kernels in the first place). The subsection <em>Choosing a Kernel</em>
of section
<A HREF="/Manual/last/doc_html/cgal_manual/Kernel_23/Chapter_main.html#Section_7.2.6">
Kernel Representations</A> in the manual provides some guidance.
<P>
<LI> <A NAME="which_NT"></A>
<B>What is the right number type for my program?</B>
<P>
There is no universal answer to this question either (which is why
our kernels are templates). The answer depends, among other things,
on how important robustness is in comparison to speed, whether your
program involves the construction of new objects or simply predicate
evaluation and comparisons, and on the size of the input numbers. The
section
<A HREF="/Manual/last/doc_html/cgal_manual/Kernel_23/Chapter_main.html#Section_7.2.6">
Choosing a kernel</A> in the kernel manual should provide some guidance.
<P>
<LI> <A NAME="predicates_vs_constructions"></A>
<B>What is the difference between a predicate and a construction and
why does this make a difference for the robustness of my program?</B>
<P>
Geometric predicates are used to test properties of geometric objects
and return, for example, a boolean value (true or false). An example
of predicate would be testing whether a point lies inside a sphere is a predicate
as is testing whether three points form a left turn, right turn or
are collinear. A geometric construction creates a new geometric object, such as the line
through two different points or the center of a circle defined by a
certain set of points.
<P>
Constructions are problematic with respect to robustness since the
constructed object has to be stored in a particular representation.
If this representation does not capture the object's properties
sufficiently, due, for example, to limited precision roundoffs, the
correctness of subsequent computations with this object cannot be
guaranteed. However, providing exact constructions is currently
less efficient, which is basically the reason why the kernel
<A HREF="/Manual/last/doc_html/cgal_manual/Kernel_23_ref/Class_Exact_predicates_inexact_constructions_kernel.html">CGAL::Exact_predicates_inexact_constructions_kernel</A> exists;
<TT>double</TT> is used as the representation
type in this case.<BR><BR>
<LI> <A NAME="inexact_NT"></A>
<B>I am using <TT>double</TT> (or <TT>float</TT> or ...) as my number
type
and get assertion failures or incorrect output. Is this a bug in CGAL?
</B>
<P>
While it may well be a bug in CGAL, with such number types you are more
likely to suffer from a problem with robustness. In particular, using
the kernel <A HREF="/Manual/last/doc_html/cgal_manual/Kernel_23_ref/Class_Cartesian.html">CGAL::Cartesian</A> with number types <TT>double</TT> or
<TT>float</TT> is likely to give you wrong results.<P><P>
The problem is that double and float are inexact number types,
and as such they cannot guarantee exact results in all
cases. Worse than this, small roundoff errors can have large
consequences, up to the point where an algorithm crashes. Algorithms
in geometric computing are particularly sensitive in this respect.
<P><P>
This was the bad news. The good news is that CGAL provides an
easy way for programmers to get around the limitations of
inexact number types like <TT>double</TT> and <TT>float</TT>,
through its templated kernels. See also our page on
<A HREF="exact.html">The Exact Computation Paradigm</A>.
<P><P>
A solution that always works (although it might slow down the algorithm
considerably) is to use an exact multi-precision number type such as
<A HREF="/Manual/last/doc_html/cgal_manual/NumberTypeSupport_ref/Class_Quotient.html">CGAL::Quotient</A><<A HREF="/Manual/last/doc_html/cgal_manual/NumberTypeSupport_ref/Class_MP_Float.html">CGAL::MP_Float</A>> or
<A HREF="/Manual/last/doc_html/cgal_manual/NumberTypeSupport_ref/Class_Gmpq.html">CGAL::Gmpq</A>, instead of <TT>double</TT> or <TT>float</TT>.
<P><P>
If your program does not involve the construction of new objects
from the input data (such as the intersection of two objects, or the
center of a sphere defined by the input objects),
the <A HREF="/Manual/last/doc_html/cgal_manual/Kernel_23_ref/Class_Exact_predicates_inexact_constructions_kernel.html">CGAL::Exact_predicates_inexact_constructions_kernel</A>
kernel provides a nice and fast way to use exact predicates together
with an inexact number type such as <TT>double</TT> for constructions.
<P><P>
When your program uses constructions of new objects, you can still
speed things up by using the number type
<A HREF="/Manual/last/doc_html/cgal_manual/NumberTypeSupport_ref/Class_Lazy_exact_nt.html">CGAL::Lazy_exact_nt</A>
on top of an exact number type.<BR><BR>
Good references that discuss the robustness problem in geometric computing are:<BR>
<UL>
<LI> S. Schirra. Robustness and precision issues in geometric
computation. <I>Research Report MPI-I-98-004, Max Planck
Institute for Computer Science</I>, 1998.
<A HREF="http://data.mpi-sb.mpg.de/internet/reports.nsf/c125634c000710d0c12560400034f45a/875a972ddb455a67c1256594004db691/$FILE/ATTC1DYI/MPI-I-98-1-004.ps">[ps-file]</A>
Revised version of: Robustness and precision issues in
geometric computations. Ch 9, in M. van Kreveld et al.
(eds.), <I>Algorithmic Foundations of Geographic Information
Systems,</I> LNCS 1340, Springer, 1997.
<LI> S. Schirra. Robustness and precision issues in geometric
computation. in J.-R. Sack and J. Urrutia (eds.),
<I>Handbook of Computational Geometry</I> Chapter 14,
Elsevier Science, 1999
<LI> Lutz Kettner, Kurt Mehlhorn, Sylvain Pion, Stefan Schirra, and
Chee Yap. Classroom Examples of Robustness Problems in
Geometric Computations, <I>Computational Geometry: Theory and
Algorithms</I>, 40(1):61-78, 2008. <A HREF="http://hal.inria.fr/inria-00344310">[html]</A>
</UL>
<P>
<LI> <A NAME="modifiable_kernel"></A>
<B>I want to modify the coordinates of a point, or the endpoints of a
segment, but the CGAL kernel does not seem to support that. Why?</B>
<P>
Our kernel concept is representation-independent.
There is no assumption on how a <tt>Point_3</tt>, for example, is represented. In
particular, it need not be represented by Cartesian coordinates. Thus
writing code that relies on being able to change these coordinates may
lead to inefficient code. Our basic library algorithms are designed
around the predicates that operate on the geometric objects and do not
require this mutability.
Non-modifiability also makes the underlying handle-rep scheme used (by
default) to allocate, copy, etc., CGAL objects somewhat easier.
We recognize, however, that users may want this flexibility and thus
are working on providing mutable kernel objects.
The only way to do this currently is to construct a new point and assign
it to the old one : use <code>p = Point_2(p.x(), p.y()+1);</code>
as if you would like to do <code>p.y() += 1;</code>.
<P>
<LI> <A NAME="to_double"></A>
<B>I want to convert a number type, e.g. <TT>FT</TT> to <TT>double</TT>.
How do I do that?</B>
<P>
All number types used by CGAL provide a conversion function called
<TT>CGAL::to_double</TT>. For example: <code>double x = CGAL::to_double(p.x());</code>.
<P>
<LI> <A NAME="uncertain_exception"></A>
<B>My program reports "Microsoft C++ exception: CGAL::Uncertain_conversion_exception at memory location ...". Why?</B>
<P>
This is an internal exception, which is caught by CGAL code. Users are not supposed
to be concerned by this, it is correct behaviour, except that it sometimes shows up,
for example when debugging. It is safe to ignore these exceptions.
See <a href="http://www.helixoft.com/blog/archives/24">here</a> for more information
on how to disable the warning.
<P>
</UL>
<A NAME="polygons"></A>
<HR>
<BR>
<FONT SIZE="+1"><B>Polygons</B></FONT>
<UL>
<LI> <A NAME="boolean_ops"></A>
<B>How can I do boolean operations on polygons?</B>
<P>
There are two means provided in CGAL for performing boolean operations
on polygons in the plane. One is provided via the class template
<A HREF="/Manual/last/doc_html/cgal_manual/Nef_2/Chapter_main.html"><TT>Nef_polyhedron_2</TT></A>.
The other is provided via the <A HREF="/Manual/last/doc_html/cgal_manual/Boolean_set_operations_2/Chapter_main.html">Boolean Set-Operations</A> package.
There are <A HREF="/Manual/last/doc_html/cgal_manual/packages.html#Pkg:BooleanSetOperations2">demo programs</A> illustrating
boolean operations using both of these. The manual pages provide
more information regarding, for example, additional functionality
available with these class templates. See also the
<A HREF="#planar_map_bops">section</A> on this page related to planar
maps and boolean operations.
<P>
<LI> <A NAME="polygon_triangulation"></A>
<B>How do I compute the triangulation of the interior of a polygon?</B>
<P>
For this, one should use one of the constrained triangulation classes:
<A HREF="/Manual/last/doc_html/cgal_manual/Triangulation_2_ref/Class_Constrained_triangulation_2.html"><TT>Constrained_triangulation_2</TT></A>,
<A HREF="/Manual/last/doc_html/cgal_manual/Triangulation_2_ref/Class_Constrained_Delaunay_triangulation_2.html"><TT>Constrained_Delaunay_triangulation_2</TT></A>
or
<A HREF="/Manual/last/doc_html/cgal_manual/Triangulation_2_ref/Class_Constrained_triangulation_plus_2.html"><TT>Constrained_triangulation_plus_2</TT></A>.
The edges of the polygon should be input as constraints to the
triangulation. The constructed triangulation will be a triangulation
of the whole convex hull, but including as edges the edges of the
polygon which are marked as constrained edges. From there it is easy
to output the faces inside (resp. outside) the polygon or to mark
these faces as such.
See <TT>($CGALROOT)/demo/Triangulation_2/constrained.cpp</TT> for an
example.
<P>
</UL>
<A NAME="planar_maps"></A>
<HR>
<BR>
<FONT SIZE="+1"><B>Planar Maps and Arrangements</B></FONT>
<UL>
<LI><a NAME="planar_map_outer_face"></A>
<B>Is the outer CCB (counterclockwise boundary) of a face of an
arrangement a SIMPLE polygon?</B>
<p>The outer CCB of a face of an arrangement is NOT
necessarily a simple polygon. Consider the case where there
are "inner antennas"; imagine a face represented by a simple
polygon and a vertex <var>v</var> on the outer CCB of the
face. Now connect a component that starts and ends at
<var>v</var> and lies in the interior of the face (one edge
incident at <var>v</var> suffices).
<p>Mind that if you are using an inexact number type you might
get a non-simple polygon even if the outer CCB represents one
due to numerical errors.</p></li>
<LI><a NAME="planar_map_bops"></A>
<B>Boolean set operations: How can I compute them?</B>
<p>The package
<a href="/Manual/last/doc_html/cgal_manual/Boolean_set_operations_2/Chapter_main.html">Regularized Boolean Set-Operation</a>
consists of the implementation of Boolean set-operations on
point sets bounded by weakly x-monotone curves in
2-dimensional Euclidean space. In particular, it contains the
implementation of regularized Boolean set-operations,
intersection predicates, and point containment predicates.</p>
<p>Ordinary Boolean set-operations that operate on (linear)
polygons, which distinguish between the interior and the
boundary of a polygon, are supported by the
<a HREF="/Manual/last/doc_html/cgal_manual/Nef_2/Chapter_main.html">Planar Nef Polyhedra</a> package.</p>
<p>For intersections of the interiors of polygons also refer to
the <a href="/Manual/last/doc_html/cgal_manual/packages.html#Pkg:Nef2">polygon
intersection demo program</a>, which is also available in the <tt>demo</tt>
directory of the CGAL distribution.</p>
<LI><a NAME="planar_map_faster"></A>
<b>How can I accelerate the work with arrangements?</B>
<p>Before the specific tips, we remind you that compiling
programs with debug flags disabled and with optimization flags
enabled significantly reduces the running time.<br><br>
<ol>
<li>Passing <var>x</var>-monotone curves that are pairwise
disjoint in their interior to the overloaded insertion-function
<a href="/Manual/last/doc_html/cgal_manual/Arrangement_on_surface_2_ref/Function_insert.html"><code>insert()</code></a>
is more efficient (in running time) and less demanding (in
traits-class functionality) than passing general curves.
</li>
<li>When the curves to be inserted into an arrangement are
segments that are pairwise disjoint in their interior, it
is more efficient to use the traits class
<a href="/Manual/last/doc_html/cgal_manual/Arrangement_on_surface_2_ref/Class_Arr_non_caching_segment_traits_2.html"><code>Arr_non_caching_segment_traits_2</code></a>
rather then the default one
(<a href="/Manual/last/doc_html/cgal_manual/Arrangement_on_surface_2_ref/Class_Arr_segment_traits_2.html"><code>Arr_segment_traits_2</code></a>).
<p>If the segments may intersect each other, the default
traits class
<a href="/Manual/last/doc_html/cgal_manual/Arrangement_on_surface_2_ref/Class_Arr_segment_traits_2.html"><code>Arr_segment_traits_2</code></a>
can be safely used with the somehow limited number type
<a href="/Manual/last/doc_html/cgal_manual/NumberTypeSupport_ref/Class_Quotient.html">Quotient</a><<a href="/Manual/last/doc_html/cgal_manual/NumberTypeSupport_ref/Class_MP_Float.html">MP_float</a>>.
<p>On rare occasions the traits class
<a href="/Manual/last/doc_html/cgal_manual/Arrangement_on_surface_2_ref/Class_Arr_non_caching_segment_traits_2.html"><code>Arr_non_caching_segment_traits_2</code></a>
exhibits slightly better performance than the default one
(<a href="/Manual/last/doc_html/cgal_manual/Arrangement_on_surface_2_ref/Class_Arr_segment_traits_2.html"><code>Arr_segment_traits_2</code></a>)
even when the segments intersect each other, due to the
small overhead of the latter (optimized) traits class.
(For example, when the the so called L<SMALL>EDA</SMALL>
rational kernel is used).
<li>Prior knowledge of the combinatorial structure of the
arrangement can be used to accelerate operations that insert
<var>x</var>-monotone curves, whose interior is disjoint
from existing edges and vertices of the arrangement. The
specialized insertion functions, i.e.,
<a href="/Manual/last/doc_html/cgal_manual/Arrangement_on_surface_2_ref/Class_Arrangement_2.html"><code>insert_in_face_interior()</code></a>,
<a href="/Manual/last/doc_html/cgal_manual/Arrangement_on_surface_2_ref/Class_Arrangement_2.html"><code>insert_from_left_vertex()</code></a>,
<a href="/Manual/last/doc_html/cgal_manual/Arrangement_on_surface_2_ref/Class_Arrangement_2.html"><code>insert_from_right_vertex()</code></a>, and
<a href="/Manual/last/doc_html/cgal_manual/Arrangement_on_surface_2_ref/Class_Arrangement_2.html"><code>insert_at_vertices()</code></a>
can be used according to the available information. These
functions hardly involve any geometric operations, if at
all. They accept topologically related parameters, and use
them to operate directly on the D<small>CEL</small> records,
thus saving algebraic operations, which are especially
expensive when high-degree curves are involved.
<p>A polygon, represented by a list of segments along its
boundary, can be inserted into an empty arrangement as
follows. First, one segment is inserted using
<a href="/Manual/last/doc_html/cgal_manual/Arrangement_on_surface_2_ref/Class_Arrangement_2.html"><code>insert_in_face_interior()</code></a>
into the unbounded face. Then, a segment with a common end
point is inserted using either
<a href="/Manual/last/doc_html/cgal_manual/Arrangement_on_surface_2_ref/Class_Arrangement_2.html"><code>insert_from_left_vertex()</code></a>
or
<a href="/Manual/last/doc_html/cgal_manual/Arrangement_on_surface_2_ref/Class_Arrangement_2.html"><code>insert_from_right_vertex()</code></a>,
and so on with the rest of the segments except for the last,
which is inserted using
<a href="/Manual/last/doc_html/cgal_manual/Arrangement_on_surface_2_ref/Class_Arrangement_2.html"><code>insert_at_vertices()</code></a>,
as both endpoints of which are the mapping of known
vertices.</p></li>
<li>The main trade-off among point-location strategies, is
between time and storage. Using the
<a href="/Manual/last/doc_html/cgal_manual/Arrangement_on_surface_2_ref/Class_Arr_naive_point_location.html">naive</a>
or
<a href="/Manual/last/doc_html/cgal_manual/Arrangement_on_surface_2_ref/Class_Arr_walk_along_line_point_location.html">walk</a>
strategies, for example, takes more query time but does not
require preprocessing or maintenance of auxiliary structures
and saves storage space.</li>
<li>If point-location queries are not performed frequently,
but other modifying functions, such as removing, splitting,
or merging edges are, then using a point-location strategy
that does not require the maintenance of auxiliary
structures, such as the
the
<a href="/Manual/last/doc_html/cgal_manual/Arrangement_on_surface_2_ref/Class_Arr_naive_point_location.html">naive</a>
or
<a href="/Manual/last/doc_html/cgal_manual/Arrangement_on_surface_2_ref/Class_Arr_walk_along_line_point_location.html">walk</a>
strategies, is preferable.</li>
<li>There is a trade-off between two modes of the
<a href="/Manual/last/doc_html/cgal_manual/Arrangement_on_surface_2_ref/Class_Arr_trapezoid_ric_point_location.html">RIC</a>
strategy that enables the user to choose whether
preprocessing should be performed or not. If preprocessing
is not used, the creation of the structure is
faster. However, for some input sequences the structure
might be unbalanced and therefore queries and updates might
take longer, especially, if many removal and split
operations are performed.</li>
<li>The various traits classes should be instantiated with
an exact number type to ensure robustness, when the input of
the operations to be carried out might be degenerate,
although inexact number types could be used at the user's
own risk.</li>
<li>Maintaining short bit-lengths of coordinate
representations may drastically decrease the time
consumption of arithmetic operations on the coordinates.
This can be achieved by caching certain information or
normalization (of rational numbers). However, both solutions
should be used cautiously, as the former may lead to an
undue space consumption, and indiscriminate normalization
may considerably slow down the overall process.</li>
<li>Geometric functions (e.g., traits methods) dominate the
time consumption of most operations. Thus, calls to such
function should be avoided or at least their number should
be decreased, perhaps at the expense of increased
combinatorial-function calls or increased space
consumption. For example, repetition of geometric-function
calls could be avoided by storing the results obtained by
the first call, and reusing them when needed.</li>
</ol>
<LI><a NAME="planar_map_adding_info"></A>
<B>How can I attach information to a vertex, a halfedge, or a face?</B>
<p>You need to change the D<small>CEL</small>, so that its
<I>vertex</I>, <I>halfedge</I>, and/or <I>face</I> types will
contain the information you want. The package facilitates
the coding necessary to achieve this task. Refer to Section
<a href="/Manual/last/doc_html/cgal_manual/Arrangement_on_surface_2/Chapter_main.html#arr_sec:ex_dcel"><b>Extending the D<small>CEL</small></b></a>
for further details.
<p>You have to supply your model of the concept
<tt>ArrangementDcel</tt>, which represents the extended
D<small>CEL</small>, and instantiate
<code>CGAL::Arrangement_on_surface_2<Traits,Dcel></code> properly.
<p>If <i>Face</i> is the only feature type you need to extend,
refer to the example at
<tt><CGALROOT>/examples/Arrangement_on_surface_2/face_extension.cpp</tt>.
The example
<tt><CGALROOT>/examples/Arrangement_on_surface_2/ex_dcel_extension.cpp</tt>
demonstrates how to extend all the feature types simultaneously.</li>
</UL>
<A NAME="polyhedron"></A>
<HR>
<BR>
<FONT SIZE="+1"><B>Polyhedral Surfaces</B></FONT>
<UL>
<LI> <A NAME="polyhedron_transform"></A>
<B>Why is there no <I>transform</I> function for
<I>Polyhedron_3</I>?</B>
<P>
The polyhedral surface (and other data structures in the
Basic Library) can have added geometric attributes by the
user that would make a generally working <I>transform</I>
function for affine transformations difficult to provide
in the class, and on the other hand it is easy for a user
to apply standard generic algorithms for that purpose, for example,
to transform the points stored in a polyhedral surface <I>P</I>
with a CGAL affine transformation given in <I>A</I> (which
is a proper STL functor) one can write:
<PRE>std::transform( P.points_begin(), P.points_end(), P.points_begin(), A);</PRE>
<P>
<LI> <A NAME="polyhedron_examples"></A>
<B>Where can I find examples of polyhedral surfaces?</B>
<P>
We have support for the Object File Format (OFF) as used by
<A HREF="http://www.geomview.org/">Geomview</A>. The
Geomview distribution contains several example objects. The
CGAL distribution contains in <TT>examples/Polyhedron_IO/</TT>
a few example objects and example programs around the file IO
support for polyhedral surfaces. Among them is a file converter
<TT>iv2off.cpp</TT> reading Inventor or VRML 1.0 files
extracting <TT>IndexedFaceSet</TT> nodes (in a rather crude
fashion, but it may still be useful). Another converter is
located in <TT>demo/Polyhedron_IO/</TT> reading geometry
files in Viewpoint Data Labs mesh format, see <A
HREF="http://www.viewpoint.com/">http://www.viewpoint.com/</A>
for its description and for examples.
Another source for many objects in various formats
is the <A HREF="http://www.3dcafe.com/">
3D Cafe</A>. Although a bit outdated, another
source of references to geometric models and other test
data sets is the
<A HREF="http://www.mpi-sb.mpg.de/~kettner/pub/cgal_report2_tr_97.ps.gz">
CGAL Workpackage 4, Report 2</A>, Fall 1997.
<P>
The easiest solution to read and write polyhedrons in OFF is
to include <TT>CGAL/IO/Polyhedron_iostream.h</TT> and use the
standard stream operators with a <I>CGAL::Polyhedron_3</I>.
<P>
<LI> <A NAME="polyhedron_normals"></A>
<B>How can I compute the plane equation (normal) for a facet
in a polyhedral surface?</B>
<P>
The <I>plane()</I> member function in facets does not compute
the plane equation, it is only the access to function to the
variable stored in facets.<P>
The plane equations must be computed separately by the
user. There is currently no general method available in CGAL
that computes the plane equations, since the requirements
could vary considerably with the number type chosen or the
possible knowledge of the facet types (convex, triangles,
...). Assuming strictly convex facets and exact arithmetic
(or the willingness to live with rounding errors), the example
<TT><CGALROOT>/examples/Polyhedron/polyhedron_prog_normals.cpp</TT>
computes these plane equations, see also the <A HREF=
"/Manual/last/doc_html/cgal_manual/Polyhedron/Chapter_main.html">User Manual
for polyhedral surfaces</A>.<P>
For inexact double arithmetic and/or non-convex facets one
might consider the method of Newell which computes the
least-square-fit normal of the plane equation, see for
example Filippo Tampieri: <EM>Newell's Method for Computing
the Plane Equation of a Polygon</EM>. Graphics Gems III,
David Kirk (Ed.), AP Professional, 1992.
<P>
</UL>