-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
73 lines (60 loc) · 2.45 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import tensorflow as tf
from tensorflow_addons.optimizers import CyclicalLearningRate
from modules import AutoencoderModel
import os
import random
from glob import glob
from pathlib import Path
#tf.keras.mixed_precision.set_global_policy('mixed_float16')
BATCH_SIZE = 4
HEIGHT = 256
WIDTH = 256
##########################
def get_dataset(filenames, batch_size):
dataset = (
tf.data.TFRecordDataset(filenames, num_parallel_reads=AUTOTUNE)
.map(parse_tfrecord_fn, num_parallel_calls=AUTOTUNE)
.map(prepare_sample, num_parallel_calls=AUTOTUNE)
.shuffle(batch_size * 10)
.batch(batch_size)
.prefetch(AUTOTUNE)
)
return dataset
def parse_tfrecord_fn(example):
feature_description = {
"image": tf.io.FixedLenFeature([], tf.string),
}
example = tf.io.parse_single_example(example, feature_description)
example["image"] = tf.io.decode_jpeg(example["image"], channels=3)
return example
def prepare_sample(features):
image = tf.image.resize(tf.cast(features["image"],dtype=tf.float32)/255., size=(HEIGHT, WIDTH))
return image
tfrecords_dir = "coco_tfrecords"
TRAIN_DIR = os.path.join(tfrecords_dir, "train")
VAL_DIR = os.path.join(tfrecords_dir, "valid")
train_filenames = tf.io.gfile.glob(os.path.join(TRAIN_DIR, "*.tfrec"))
validation_filenames = tf.io.gfile.glob(os.path.join(VAL_DIR, "*.tfrec"))
AUTOTUNE = tf.data.AUTOTUNE
##########################################
model = AutoencoderModel(1)
INIT_LR = 5e-5
MAX_LR = 1e-4
clr = CyclicalLearningRate(initial_learning_rate=INIT_LR,
maximal_learning_rate=MAX_LR,
scale_fn=lambda x: 1/(2.**(x-1)),
step_size=2 * 29572)
opt = tf.keras.optimizers.Adam(learning_rate=clr)
#opt = tf.keras.mixed_precision.LossScaleOptimizer(opt)
model.compile(optimizer=opt)
#model.load_weights("final_model")
chk_point = tf.keras.callbacks.ModelCheckpoint(filepath='model/model.{epoch:02d}-{val_loss:.2f}.h5',
save_best_only=True,
save_weights_only=True)
model.fit(x=get_dataset(train_filenames,batch_size=BATCH_SIZE),
validation_data=get_dataset(validation_filenames, batch_size=BATCH_SIZE),
epochs=10,
callbacks = chk_point,
verbose=int(True)
)
model.save('final_model')