forked from open-compass/opencompass
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval_academic_leaderboard_202407.py
196 lines (173 loc) · 7.53 KB
/
eval_academic_leaderboard_202407.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
from mmengine.config import read_base
import os.path as osp
from opencompass.partitioners import NaivePartitioner, NumWorkerPartitioner
from opencompass.runners import LocalRunner
from opencompass.tasks import OpenICLInferTask, OpenICLEvalTask
#######################################################################
# PART 0 Essential Configs #
#######################################################################
with read_base():
# Datasets Part
## Core Set
# ## Examination
from opencompass.configs.datasets.mmlu.mmlu_openai_simple_evals_gen_b618ea import mmlu_datasets
from opencompass.configs.datasets.mmlu_pro.mmlu_pro_0shot_cot_gen_08c1de import mmlu_pro_datasets
from opencompass.configs.datasets.cmmlu.cmmlu_0shot_cot_gen_305931 import cmmlu_datasets
# ## Reasoning
from opencompass.configs.datasets.bbh.bbh_gen_4a31fa import bbh_datasets
from opencompass.configs.datasets.gpqa.gpqa_openai_simple_evals_gen_5aeece import gpqa_datasets
# ## Math
from opencompass.configs.datasets.math.math_0shot_gen_393424 import math_datasets
# ## Coding
from opencompass.configs.datasets.humaneval.humaneval_gen_8e312c import humaneval_datasets
# ## Instruction Following
from opencompass.configs.datasets.IFEval.IFEval_gen_3321a3 import ifeval_datasets
# Summarizer
from opencompass.configs.summarizers.groups.mmlu import mmlu_summary_groups
from opencompass.configs.summarizers.groups.mmlu_pro import mmlu_pro_summary_groups
from opencompass.configs.summarizers.groups.cmmlu import cmmlu_summary_groups
from opencompass.configs.summarizers.groups.bbh import bbh_summary_groups
# Model List
# from opencompass.configs.models.qwen.lmdeploy_qwen2_1_5b_instruct import models as lmdeploy_qwen2_1_5b_instruct_model
# from opencompass.configs.models.hf_internlm.lmdeploy_internlm2_5_7b_chat import models as hf_internlm2_5_7b_chat_model
# from opencompass.configs.models.openbmb.hf_minicpm_2b_sft_bf16 import models as hf_minicpm_2b_sft_bf16_model
# from opencompass.configs.models.yi.hf_yi_1_5_6b_chat import models as hf_yi_1_5_6b_chat_model
# from opencompass.configs.models.gemma.hf_gemma_2b_it import models as hf_gemma_2b_it_model
# from opencompass.configs.models.yi.hf_yi_1_5_34b_chat import models as hf_yi_1_5_34b_chat_model
#######################################################################
# PART 1 Datasets List #
#######################################################################
# datasets list for evaluation
datasets = sum((v for k, v in locals().items() if k.endswith('_datasets')), [])
#######################################################################
# PART 2 Datset Summarizer #
#######################################################################
# with read_base():
core_summary_groups = [
{
'name': 'core_average',
'subsets': [
['mmlu', 'accuracy'],
['mmlu_pro', 'accuracy'],
# ['cmmlu', 'naive_average'],
['cmmlu', 'accuracy'],
['bbh', 'score'],
['math', 'accuracy'],
['openai_humaneval', 'humaneval_pass@1'],
['GPQA_diamond', 'accuracy'],
['IFEval', 'Prompt-level-strict-accuracy'],
],
},
]
summarizer = dict(
dataset_abbrs=[
['core_average', 'naive_average'],
['mmlu', 'accuracy'],
['mmlu_pro', 'accuracy'],
['cmmlu', 'accuracy'],
['bbh', 'score'],
['math', 'accuracy'],
['openai_humaneval', 'humaneval_pass@1'],
['GPQA_diamond', 'accuracy'],
['IFEval', 'Prompt-level-strict-accuracy'],
'',
['mmlu', 'accuracy'],
['mmlu-stem', 'accuracy'],
['mmlu-social-science', 'accuracy'],
['mmlu-humanities', 'accuracy'],
['mmlu-other', 'accuracy'],
'',
['mmlu_pro', 'accuracy'],
['mmlu_pro_math','accuracy'],
['mmlu_pro_physics', 'accuracy'],
['mmlu_pro_chemistry', 'accuracy'],
['mmlu_pro_law', 'accuracy'],
['mmlu_pro_engineering', 'accuracy'],
['mmlu_pro_other', 'accuracy'],
['mmlu_pro_economics', 'accuracy'],
['mmlu_pro_health', 'accuracy'],
['mmlu_pro_psychology', 'accuracy'],
['mmlu_pro_business', 'accuracy'],
['mmlu_pro_biology', 'accuracy'],
['mmlu_pro_philosophy', 'accuracy'],
['mmlu_pro_computer_science','accuracy'],
['mmlu_pro_history', 'accuracy'],
'',
['cmmlu', 'accuracy'],
['cmmlu-stem', 'accuracy'],
['cmmlu-social-science', 'accuracy'],
['cmmlu-humanities', 'accuracy'],
['cmmlu-other', 'accuracy'],
['cmmlu-china-specific', 'accuracy'],
'',
['bbh', 'extract_rate'],
['math', 'extract_rate'],
# ['openai_humaneval', 'extract_rate'],
['GPQA_diamond', 'extract_rate'],
# ['IFEval', 'extract_rate'],
'',
['mmlu', 'extract_rate'],
['mmlu-stem', 'extract_rate'],
['mmlu-social-science', 'extract_rate'],
['mmlu-humanities', 'extract_rate'],
['mmlu-other', 'extract_rate'],
'',
['mmlu_pro', 'extract_rate'],
['mmlu_pro_math', 'extract_rate'],
['mmlu_pro_physics', 'extract_rate'],
['mmlu_pro_chemistry', 'extract_rate'],
['mmlu_pro_law', 'extract_rate'],
['mmlu_pro_engineering', 'extract_rate'],
['mmlu_pro_other', 'extract_rate'],
['mmlu_pro_economics', 'extract_rate'],
['mmlu_pro_health', 'extract_rate'],
['mmlu_pro_psychology', 'extract_rate'],
['mmlu_pro_business', 'extract_rate'],
['mmlu_pro_biology', 'extract_rate'],
['mmlu_pro_philosophy', 'extract_rate'],
['mmlu_pro_computer_science', 'extract_rate'],
['mmlu_pro_history', 'extract_rate'],
'',
['cmmlu', 'extract_rate'],
['cmmlu-stem', 'extract_rate'],
['cmmlu-social-science', 'extract_rate'],
['cmmlu-humanities', 'extract_rate'],
['cmmlu-other', 'extract_rate'],
['cmmlu-china-specific', 'extract_rate'],
],
summary_groups=sum(
[v for k, v in locals().items() if k.endswith('_summary_groups')], []),
)
#######################################################################
# PART 3 Models List #
#######################################################################
models = sum([v for k, v in locals().items() if k.endswith('_model')], [])
#######################################################################
# PART 4 Inference/Evaluation Configuaration #
#######################################################################
# Local Runner
infer = dict(
partitioner=dict(
type=NumWorkerPartitioner,
num_worker=8
),
runner=dict(
type=LocalRunner,
max_num_workers=16,
retry=0, # Modify if needed
task=dict(type=OpenICLInferTask)
),
)
# eval with local runner
eval = dict(
partitioner=dict(type=NaivePartitioner, n=10),
runner=dict(
type=LocalRunner,
max_num_workers=16,
task=dict(type=OpenICLEvalTask)),
)
#######################################################################
# PART 5 Utils Configuaration #
#######################################################################
base_exp_dir = 'outputs/corebench_v1_9/'
work_dir = osp.join(base_exp_dir, 'chat_objective')