-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain_and_test_model.py
184 lines (131 loc) · 5.36 KB
/
train_and_test_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
import numpy as np
save_directory = 'saved_data'
parser = argparse.ArgumentParser(description='PyTorch toy Example')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
use_both_proba_and_target = False
data = torch.from_numpy(np.load('%s/X_train.npy' % save_directory).astype(float)).float()
proba = torch.from_numpy(np.load('%s/Y_train.npy' % save_directory).astype(float)).float()
train_batch_size = 1000
test_batch_size = 1000
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
train_loader = torch.utils.data.DataLoader(torch.utils.data.TensorDataset(data, proba),
batch_size=train_batch_size, shuffle=True, **kwargs)
proba = np.load('%s/Y_test.npy' % save_directory).astype(float)
proba = torch.from_numpy(proba).float()
test_data = torch.from_numpy(np.load('%s/X_test.npy' % save_directory).astype(float)).float()
test_loader = torch.utils.data.DataLoader(torch.utils.data.TensorDataset(test_data, proba),
batch_size=test_batch_size, shuffle=False, **kwargs)
nb_input_dimensions = 3
nb_output_dimensions = nb_input_dimensions
nb_hidden_dimensions = 30
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.hidden = nn.Linear(nb_input_dimensions, nb_hidden_dimensions)
self.hidden2 = nn.Linear(nb_hidden_dimensions, nb_hidden_dimensions)
self.out = nn.Linear(nb_hidden_dimensions,nb_output_dimensions)
def forward(self, x):
x = F.tanh(self.hidden(x))
x = F.tanh(self.hidden2(x))
x = self.out(x)
return x
model = Net()
class ClusterEmbedding(nn.Module):
def __init__(self, y_target):
super(ClusterEmbedding, self).__init__()
self.n_examples = y_target.size(0)
self.inds = Variable(torch.arange(0, self.n_examples).long())
self.y_target = Variable(y_target)
self.embedding = nn.Embedding(self.n_examples, 2)
def forward(self):
return self.embedding.forward(self.inds)
if args.cuda:
model.cuda()
optimizer = optim.Adam(model.parameters(), lr=0.0001)
def inv_H(H_prev):
H_prev_inv = H_prev.t()
d = H_prev_inv.sum(1).unsqueeze(1).expand_as(H_prev_inv)
d[d==0] = 1
return H_prev_inv / d
def pseudo_inverse(X):
u, s, v = torch.svd(X)
h = torch.max(s) * float(max(X.size(0),X.size(1))) * 1e-15
indices = torch.ge(s,h)
indices2 = indices.eq(0)
s[indices] = 1.0 / s[indices]
s[indices2] = 0
return torch.mm(torch.mm(v, torch.diag(s)), u.t())
def grad_F(F, H):
inv_F = pseudo_inverse(F)
return torch.mm(torch.mm(F,torch.mm(inv_F,H)) - H,torch.mm(inv_H(H),inv_F.t()))
def spectral_learning(epoch):
model.train()
enum_train = enumerate(train_loader)
for batch_idx, (data, Y) in enum_train:
if args.cuda:
data, Y = data.cuda(), Y.cuda()
data, Y = Variable(data), Variable(Y)
optimizer.zero_grad()
F = model.forward(data)
G = grad_F(F,Y)
F.backward(gradient=G)
optimizer.step()
objective_value = Y.size()[1] - torch.sum(torch.mm(pseudo_inverse(Y),F) * torch.mm(pseudo_inverse(F), Y).t())
print("epoch %d --- loss value= %f" % (epoch, objective_value))
def save_to_file(iteration):
model.eval()
fdata = open("%s/test_input_data.txt" % save_directory,"w")
foutput = open("%s/test_output_data.txt" % save_directory,"w")
flabels = open("%s/test_labels.txt" % save_directory,"w")
for data, target in test_loader:
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
target = target.max(1)[1] + 1
z = model.forward(data)
for i in range(z.size()[0]):
for j in range(nb_input_dimensions):
if args.cuda:
fdata.write("%f " % data[i][j].data.cpu().numpy().astype(float))
else:
fdata.write("%f " % data[i][j].data.numpy().astype(float))
fdata.write("\n")
for j in range(nb_output_dimensions):
if args.cuda:
foutput.write("%f " % z[i][j].data.cpu().numpy().astype(float))
else:
foutput.write("%f " % z[i][j].data.numpy().astype(float))
foutput.write("\n")
if args.cuda:
flabels.write("%d\n" % target[i].data.cpu().numpy().astype(int))
else:
flabels.write("%d\n" % target[i].data.numpy().astype(int))
fdata.close()
flabels.close()
foutput.close()
nb_epochs = 100
####### training
print("Starting training")
for epoch in range(1, nb_epochs+1):
spectral_learning(epoch)
print("Training complete")
####### saving test representations
print("Saving test representations")
save_to_file(nb_epochs)
print("Test representations saved")