-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
198 lines (163 loc) · 7.38 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
# -*- coding: utf-8 -*-
import os
import queue
import hydra
import random
import logging
import numpy as np
from omegaconf import OmegaConf
from hydra.utils import get_original_cwd
import torch
from torch.utils.tensorboard import SummaryWriter
from utils.equations import equation_dict
from utils.data_utils import split_data
from utils.samplers import sampler_dict
from utils.reweightings import reweighting_dict
from utils.models import FullyConnectedNetwork, model_saver
from test import test2d
@hydra.main(version_base=None, config_path="./conf", config_name="ACEquation")
def train_setup(cfg):
log = logging.getLogger("Train")
problem_conf = cfg["problem_conf"]
global_conf = cfg["global_conf"]
model_conf = cfg["model_conf"]
train_conf = cfg["train_conf"]
data_conf = cfg["data_conf"]
tensorboard_writer = SummaryWriter(cfg["global_conf"]["tensorboard_path"])
log.info(OmegaConf.to_yaml(cfg))
# ---------------
# global
# ---------------
if global_conf["seed"]:
np.random.seed(global_conf["seed"])
random.seed(global_conf["seed"])
torch.manual_seed(global_conf["seed"])
torch.cuda.manual_seed(global_conf["seed"])
device = torch.device(global_conf["device"])
log.info(f"device: {device}")
# -------------
# model
# -------------
log.info("create model...")
model = FullyConnectedNetwork(model_conf)
model.to(device)
log.info(model)
if model_conf.load_model:
log.info("load weights")
model.load_state_dict(torch.load(model_conf.model_path))
log.info("load done...")
# ------------
# create data
# ------------
problem_define = equation_dict[cfg["name"]](problem_conf, data_conf) # create data_manager
problem_define.data_generator(global_conf["seed"]) # create dataset
log.info("create problem data successful...")
# ---------------------
# split training, validating, testing
# ---------------------
split_t_dict = {
"train": train_conf["train_t_range"],
"eval": train_conf["eval_t_range"],
"test": train_conf["test_t_range"]
}
boundary_data_split_result = split_data(problem_define.boundary_data, split_t_dict, 0)
pde_data_split_result = split_data(problem_define.pde_data, split_t_dict, 0)
log.info("split dataset successful...")
# ---------
# create sampler
# ---------
# train data sampler
train_initial_tensor = torch.from_numpy(problem_define.initial_data).to(device=device, dtype=torch.float)
train_boundary_tensor = torch.from_numpy(boundary_data_split_result["train"]).to(device=device, dtype=torch.float)
train_pde_tensor = torch.from_numpy(pde_data_split_result["train"]).to(device=device, dtype=torch.float)
train_pde_tensor.requires_grad = True
if problem_conf["boundary_cond"] == "periodic":
train_boundary_tensor.requires_grad = True
train_pde_sampler = sampler_dict[train_conf["pde_sampler"]](
train_pde_tensor, reweighting_dict[train_conf["pde_reweighting"]](train_conf["reweighting_params"]),
model=model,
loss_func=problem_define.compute_loss_basic_weights,
**train_conf["sampler_conf"]
)
train_initial_sampler = sampler_dict["UniformSampler"](train_initial_tensor, reweighting_dict["NoReWeighting"]())
train_boundary_sampler = sampler_dict["UniformSampler"](train_boundary_tensor, reweighting_dict["NoReWeighting"]())
# validate data
project_root = get_original_cwd()
ground_true_numpy = np.load("{}/ground_true/{}.npz".format(project_root, cfg["name"]))
x_input = ground_true_numpy["input_x"].reshape(-1, 1)
t_input = ground_true_numpy["input_t"].reshape(-1, 1)
output = ground_true_numpy["output"].reshape(-1, 1)
ground_true = np.concatenate([t_input, x_input, output], axis=1)
# ground true
ground_true_split_data = split_data(ground_true, split_t_dict, 0)
for key, data in ground_true_split_data.items():
ground_true_split_data[key] = torch.from_numpy(data).to(device=torch.device("cuda"), dtype=torch.float)
# -------------
# optimizer
# -------------
optim = torch.optim.Adam(model.parameters(), **train_conf["optim_conf"])
# -------------
# main loop
# -------------
best_eval_loss = 1e6
best_model_save_path = None
train_main_conf = train_conf["main_conf"]
model_save_queue = queue.Queue(maxsize=5)
for step in range(train_main_conf["max_steps"]):
train_pde_data = train_pde_sampler.sampler(train_main_conf["pde_batch_size"])
train_initial_data = train_initial_sampler.sampler(train_main_conf["initial_batch_size"])
train_boundary_data = train_boundary_sampler.sampler(train_main_conf["boundary_batch_size"])
optim.zero_grad()
loss_dict = problem_define.compute_loss(model, train_pde_data, train_initial_data, train_boundary_data, "train")
optim.step()
if step % train_main_conf["print_frequency"] == 0:
log.info(f"step: {step}")
for key, value in loss_dict.items():
log.info("{} loss: {:.5e}".format(key, value))
tensorboard_writer.add_scalar(f"TrainLoss/{key}", value, step)
if step % train_main_conf["eval_frequency"] == 0:
log.info("evaluation")
model.eval()
# evaluation
loss_dict = dict()
for key, data in ground_true_split_data.items():
_pred = model(data[:, 0:2])
if _pred.shape[1] == 2:
_pred = torch.sqrt(_pred[:, 0:1] ** 2 + _pred[:, 1:2] ** 2)
_error = torch.abs(_pred - data[:, 2:3])
_absolute_error = torch.mean(_error).item()
_l2_error = torch.mean(_error**2).item()
_peak_error = torch.max(_error).item()
log.info("{} area: peak error:{:.4e}, "
"absolute error:{:.4e}, "
"l2 error:{:.4e}".format(key, _peak_error, _absolute_error, _l2_error))
tensorboard_writer.add_scalar(f"Error/{key} peak", _peak_error, step)
tensorboard_writer.add_scalar(f"Error/{key} l2", _l2_error, step)
tensorboard_writer.add_scalar(f"Error/{key} absolute", _absolute_error, step)
loss_dict[key] = _l2_error
if best_eval_loss > loss_dict["eval"]:
best_eval_loss = loss_dict["eval"]
best_model_save_path = model_saver(
save_folder=train_main_conf["model_save_folder"],
model=model,
save_name=train_main_conf["model_basic_save_name"],
step=step
)
if model_save_queue.full():
del_step = model_save_queue.get()
del_path = os.path.join(train_main_conf["model_save_folder"],
"{}_{}.pth".format(train_main_conf["model_basic_save_name"], del_step))
os.remove(del_path)
model_save_queue.put(step)
model.train()
log.info("train done...")
# ---------
# testing
# ---------
log.info("begin test...")
model.load_state_dict(torch.load(best_model_save_path))
if problem_conf["dims"] == 2:
test2d(model, problem_conf["t_range"], problem_conf["x_range"], ground_true=ground_true)
log.info("test done...")
if __name__ == "__main__":
train_setup()