From 315ac717215fa4d14e24dd41d856f53460ff57d8 Mon Sep 17 00:00:00 2001 From: MervinPraison Date: Sat, 11 Jan 2025 17:12:56 +0000 Subject: [PATCH] adding docs --- agents/prompt_chaining copy.py | 91 +++++++ agents/prompt_chaining.py | 91 +++++++ agents/routing copy.py | 82 ++++++ agents/routing.py | 83 ++++++ cookbooks/general/async_example.py | 233 ++++++++++++++++ cookbooks/general/async_example_full.py | 152 +++++++++++ .../general/async_example_full_multigroups.py | 248 +++++++++++++++++ cookbooks/general/auto_agents_example.py | 11 + cookbooks/general/code_agents_example.py | 50 ++++ cookbooks/general/example_callback.py | 204 ++++++++++++++ cookbooks/general/example_custom_tools.py | 151 +++++++++++ cookbooks/general/example_sequential.py | 141 ++++++++++ cookbooks/general/langchain_example.py | 30 +++ cookbooks/general/memory_example.py | 183 +++++++++++++ cookbooks/general/memory_simple.py | 63 +++++ cookbooks/general/mini_agents_example.py | 6 + cookbooks/general/multimodal.py | 59 ++++ .../general/structured_agents_example.py | 56 ++++ .../general/structured_response_example.py | 95 +++++++ cookbooks/general/tools_example.py | 30 +++ cookbooks/general/workflow_example_basic.py | 74 +++++ .../general/workflow_example_detailed.py | 253 ++++++++++++++++++ docs/features/agenticrouting.mdx | 224 ++++++++++++++++ docs/mint.json | 3 +- 24 files changed, 2612 insertions(+), 1 deletion(-) create mode 100644 agents/prompt_chaining copy.py create mode 100644 agents/prompt_chaining.py create mode 100644 agents/routing copy.py create mode 100644 agents/routing.py create mode 100644 cookbooks/general/async_example.py create mode 100644 cookbooks/general/async_example_full.py create mode 100644 cookbooks/general/async_example_full_multigroups.py create mode 100644 cookbooks/general/auto_agents_example.py create mode 100644 cookbooks/general/code_agents_example.py create mode 100644 cookbooks/general/example_callback.py create mode 100644 cookbooks/general/example_custom_tools.py create mode 100644 cookbooks/general/example_sequential.py create mode 100644 cookbooks/general/langchain_example.py create mode 100644 cookbooks/general/memory_example.py create mode 100644 cookbooks/general/memory_simple.py create mode 100644 cookbooks/general/mini_agents_example.py create mode 100644 cookbooks/general/multimodal.py create mode 100644 cookbooks/general/structured_agents_example.py create mode 100644 cookbooks/general/structured_response_example.py create mode 100644 cookbooks/general/tools_example.py create mode 100644 cookbooks/general/workflow_example_basic.py create mode 100644 cookbooks/general/workflow_example_detailed.py create mode 100644 docs/features/agenticrouting.mdx diff --git a/agents/prompt_chaining copy.py b/agents/prompt_chaining copy.py new file mode 100644 index 00000000..185ee30d --- /dev/null +++ b/agents/prompt_chaining copy.py @@ -0,0 +1,91 @@ +from praisonaiagents.agent import Agent +from praisonaiagents.task import Task +from praisonaiagents.agents import PraisonAIAgents +from typing import List, Dict +import time + +def get_time_check(): + current_time = int(time.time()) + result = "even" if current_time % 2 == 0 else "odd" + print(f"Time check: {current_time} is {result}") + return result + +def create_prompt_chain(): + # Create agents for each step in the chain + agent1 = Agent( + name="Time Checker", + role="Time checker", + goal="Check if the time is even or odd", + instructions="Check if the time is even or odd", + tools=[get_time_check] + ) + + agent2 = Agent( + name="Advanced Analyzer", + role="Advanced data analyzer", + goal="Perform in-depth analysis of processed data", + instructions="Analyze the processed data in detail" + ) + + agent3 = Agent( + name="Final Processor", + role="Final data processor", + goal="Generate final output based on analysis", + instructions="Create final output based on analyzed data" + ) + + # Create tasks for each step + initial_task = Task( + name="time_check", + description="Getting time check and checking if it is even or odd", + expected_output="Getting time check and checking if it is even or odd", + agent=agent1, + is_start=True, # Mark as the starting task + task_type="decision", # This task will make a decision + next_tasks=["advanced_analysis"], # Next task if condition passes + condition={ + "even": ["advanced_analysis"], # If passes, go to advanced analysis + "odd": ["final_processing"] # If fails, exit the chain + } + ) + + analysis_task = Task( + name="advanced_analysis", + description="Perform advanced analysis on the processed data", + expected_output="Analyzed data ready for final processing", + agent=agent2, + next_tasks=["final_processing"] + ) + + final_task = Task( + name="final_processing", + description="Generate final output", + expected_output="Final processed result", + agent=agent3 + ) + + # Create the workflow manager + workflow = PraisonAIAgents( + agents=[agent1, agent2, agent3], + tasks=[initial_task, analysis_task, final_task], + process="workflow", # Use workflow process type + verbose=True + ) + + return workflow + +def main(): + # Create and run the prompt chain + workflow = create_prompt_chain() + + # Run the workflow + results = workflow.start() + + # Print results + print("\nWorkflow Results:") + for task_id, result in results["task_results"].items(): + if result: + print(f"Task {task_id}: {result.raw}") + +if __name__ == "__main__": + main() diff --git a/agents/prompt_chaining.py b/agents/prompt_chaining.py new file mode 100644 index 00000000..185ee30d --- /dev/null +++ b/agents/prompt_chaining.py @@ -0,0 +1,91 @@ +from praisonaiagents.agent import Agent +from praisonaiagents.task import Task +from praisonaiagents.agents import PraisonAIAgents +from typing import List, Dict +import time + +def get_time_check(): + current_time = int(time.time()) + result = "even" if current_time % 2 == 0 else "odd" + print(f"Time check: {current_time} is {result}") + return result + +def create_prompt_chain(): + # Create agents for each step in the chain + agent1 = Agent( + name="Time Checker", + role="Time checker", + goal="Check if the time is even or odd", + instructions="Check if the time is even or odd", + tools=[get_time_check] + ) + + agent2 = Agent( + name="Advanced Analyzer", + role="Advanced data analyzer", + goal="Perform in-depth analysis of processed data", + instructions="Analyze the processed data in detail" + ) + + agent3 = Agent( + name="Final Processor", + role="Final data processor", + goal="Generate final output based on analysis", + instructions="Create final output based on analyzed data" + ) + + # Create tasks for each step + initial_task = Task( + name="time_check", + description="Getting time check and checking if it is even or odd", + expected_output="Getting time check and checking if it is even or odd", + agent=agent1, + is_start=True, # Mark as the starting task + task_type="decision", # This task will make a decision + next_tasks=["advanced_analysis"], # Next task if condition passes + condition={ + "even": ["advanced_analysis"], # If passes, go to advanced analysis + "odd": ["final_processing"] # If fails, exit the chain + } + ) + + analysis_task = Task( + name="advanced_analysis", + description="Perform advanced analysis on the processed data", + expected_output="Analyzed data ready for final processing", + agent=agent2, + next_tasks=["final_processing"] + ) + + final_task = Task( + name="final_processing", + description="Generate final output", + expected_output="Final processed result", + agent=agent3 + ) + + # Create the workflow manager + workflow = PraisonAIAgents( + agents=[agent1, agent2, agent3], + tasks=[initial_task, analysis_task, final_task], + process="workflow", # Use workflow process type + verbose=True + ) + + return workflow + +def main(): + # Create and run the prompt chain + workflow = create_prompt_chain() + + # Run the workflow + results = workflow.start() + + # Print results + print("\nWorkflow Results:") + for task_id, result in results["task_results"].items(): + if result: + print(f"Task {task_id}: {result.raw}") + +if __name__ == "__main__": + main() diff --git a/agents/routing copy.py b/agents/routing copy.py new file mode 100644 index 00000000..9cc3befc --- /dev/null +++ b/agents/routing copy.py @@ -0,0 +1,82 @@ +from praisonaiagents.agent import Agent +from praisonaiagents.task import Task +from praisonaiagents.agents import PraisonAIAgents +import time + +current_time = int(time.time()) +result = "even" if current_time % 2 == 0 else "odd" +print(f"Time check: {current_time} is {result}") + +# Create specialized agents +router = Agent( + name="Router", + role="Input Router", + goal="Evaluate input and determine routing path", + instructions="Analyze input and decide whether to proceed or exit", + tools=[get_time_check] +) + +processor1 = Agent( + name="Processor 1", + role="Secondary Processor", + goal="Process valid inputs that passed initial check", + instructions="Process data that passed the routing check" +) + +processor2 = Agent( + name="Processor 2", + role="Final Processor", + goal="Perform final processing on validated data", + instructions="Generate final output for processed data" +) + +# Create tasks with routing logic +routing_task = Task( + name="initial_routing", + description="check the time and return according to what is returned", + expected_output="pass or fail based on what is returned", + agent=router, + is_start=True, + task_type="decision", + condition={ + "pass": ["process_valid"], + "fail": "exit" + } +) + +processing_task = Task( + name="process_valid", + description="Process validated input", + expected_output="Processed data ready for final step", + agent=processor1, + next_tasks=["final_process"] +) + +final_task = Task( + name="final_process", + description="Generate final output", + expected_output="Final processed result", + agent=processor2 +) + +# Create and run workflow +workflow = PraisonAIAgents( + agents=[router, processor1, processor2], + tasks=[routing_task, processing_task, final_task], + process="workflow", + verbose=True +) + +print("\nStarting Routing Workflow...") +print("=" * 50) + +results = workflow.start() + +print("\nWorkflow Results:") +print("=" * 50) +for task_id, result in results["task_results"].items(): + if result: + task_name = result.description + print(f"\nTask: {task_name}") + print(f"Result: {result.raw}") + print("-" * 50) diff --git a/agents/routing.py b/agents/routing.py new file mode 100644 index 00000000..06a5299b --- /dev/null +++ b/agents/routing.py @@ -0,0 +1,83 @@ +from praisonaiagents.agent import Agent +from praisonaiagents.task import Task +from praisonaiagents.agents import PraisonAIAgents +import time + +def get_time_check(): + current_time = int(time.time()) + result = "even" if current_time % 2 == 0 else "odd" + print(f"Time check: {current_time} is {result}") + return result + +# Create specialized agents +router = Agent( + name="Router", + role="Input Router", + goal="Evaluate input and determine routing path", + instructions="Analyze input and decide whether to proceed or exit", + tools=[get_time_check] +) + +processor1 = Agent( + name="Processor 1", + role="Secondary Processor", + goal="Process valid inputs that passed initial check", + instructions="Process data that passed the routing check" +) + +processor2 = Agent( + name="Processor 2", + role="Final Processor", + goal="Perform final processing on validated data", + instructions="Generate final output for processed data" +) + +# Create tasks with routing logic +routing_task = Task( + name="initial_routing", + description="check the time and return according to what is returned", + expected_output="pass or fail based on what is returned", + agent=router, + is_start=True, + task_type="decision", + condition={ + "pass": ["process_valid"], + "fail": ["process_invalid"] + } +) + +processing_task = Task( + name="process_valid", + description="Process validated input", + expected_output="Processed data ready for final step", + agent=processor1, +) + +final_task = Task( + name="process_invalid", + description="Generate final output", + expected_output="Final processed result", + agent=processor2 +) + +# Create and run workflow +workflow = PraisonAIAgents( + agents=[router, processor1, processor2], + tasks=[routing_task, processing_task, final_task], + process="workflow", + verbose=True +) + +print("\nStarting Routing Workflow...") +print("=" * 50) + +results = workflow.start() + +print("\nWorkflow Results:") +print("=" * 50) +for task_id, result in results["task_results"].items(): + if result: + task_name = result.description + print(f"\nTask: {task_name}") + print(f"Result: {result.raw}") + print("-" * 50) diff --git a/cookbooks/general/async_example.py b/cookbooks/general/async_example.py new file mode 100644 index 00000000..fe3b0388 --- /dev/null +++ b/cookbooks/general/async_example.py @@ -0,0 +1,233 @@ +import asyncio +import time +from typing import List, Dict +from praisonaiagents import Agent, Task, PraisonAIAgents, TaskOutput +from praisonaiagents.main import ( + display_error, + display_interaction, + display_tool_call, + display_instruction, + error_logs, + Console +) +from duckduckgo_search import DDGS +from pydantic import BaseModel + +console = Console() + +# 1. Define output model for structured results +class SearchResult(BaseModel): + query: str + results: List[Dict[str, str]] + total_results: int + +# 2. Define both sync and async tools +def sync_search_tool(query: str) -> List[Dict]: + """ + Synchronous search using DuckDuckGo. + Args: + query (str): The search query. + Returns: + list: Search results + """ + display_tool_call(f"Running sync search for: {query}", console) + time.sleep(1) # Simulate network delay + try: + results = [] + ddgs = DDGS() + for result in ddgs.text(keywords=query, max_results=5): + results.append({ + "title": result.get("title", ""), + "url": result.get("href", ""), + "snippet": result.get("body", "") + }) + return results + except Exception as e: + error_msg = f"Error during sync search: {e}" + display_error(error_msg, console) + error_logs.append(error_msg) + return [] + +async def async_search_tool(query: str) -> List[Dict]: + """ + Asynchronous search using DuckDuckGo. + Args: + query (str): The search query. + Returns: + list: Search results + """ + display_tool_call(f"Running async search for: {query}", console) + await asyncio.sleep(1) # Simulate network delay + try: + results = [] + ddgs = DDGS() + for result in ddgs.text(keywords=query, max_results=5): + results.append({ + "title": result.get("title", ""), + "url": result.get("href", ""), + "snippet": result.get("body", "") + }) + return results + except Exception as e: + error_msg = f"Error during async search: {e}" + display_error(error_msg, console) + error_logs.append(error_msg) + return [] + +# 3. Define both sync and async callbacks +def sync_callback(output: TaskOutput): + display_interaction("Sync Callback", f"Processing output: {output.raw[:100]}...", markdown=True, console=console) + time.sleep(1) # Simulate processing + if output.output_format == "JSON": + display_tool_call(f"Processed JSON result: {output.json_dict}", console) + elif output.output_format == "Pydantic": + display_tool_call(f"Processed Pydantic result: {output.pydantic}", console) + +async def async_callback(output: TaskOutput): + display_interaction("Async Callback", f"Processing output: {output.raw[:100]}...", markdown=True, console=console) + await asyncio.sleep(1) # Simulate processing + if output.output_format == "JSON": + display_tool_call(f"Processed JSON result: {output.json_dict}", console) + elif output.output_format == "Pydantic": + display_tool_call(f"Processed Pydantic result: {output.pydantic}", console) + +# 4. Create agents with different tools +sync_agent = Agent( + name="SyncAgent", + role="Synchronous Search Specialist", + goal="Perform synchronous searches and return structured results", + backstory="Expert in sync operations and data organization", + tools=[sync_search_tool], + self_reflect=False, + verbose=True, + markdown=True +) + +async_agent = Agent( + name="AsyncAgent", + role="Asynchronous Search Specialist", + goal="Perform asynchronous searches and return structured results", + backstory="Expert in async operations and data organization", + tools=[async_search_tool], + self_reflect=False, + verbose=True, + markdown=True +) + +# 5. Create tasks with different configurations +sync_task = Task( + name="sync_search", + description="Search for 'Python programming' using sync tool and return structured results", + expected_output="SearchResult model with query details and results", + agent=sync_agent, + async_execution=False, + callback=sync_callback, + output_pydantic=SearchResult +) + +async_task = Task( + name="async_search", + description="Search for 'Async programming' using async tool and return structured results", + expected_output="SearchResult model with query details and results", + agent=async_agent, + async_execution=True, + callback=async_callback, + output_pydantic=SearchResult +) + +# 6. Create workflow tasks +workflow_sync_task = Task( + name="workflow_sync", + description="Workflow sync search for 'AI trends' with structured output", + expected_output="SearchResult model with AI trends data", + agent=sync_agent, + async_execution=False, + is_start=True, + next_tasks=["workflow_async"], + output_pydantic=SearchResult +) + +workflow_async_task = Task( + name="workflow_async", + description="Workflow async search for 'Future of AI' with structured output", + expected_output="SearchResult model with Future of AI data", + agent=async_agent, + async_execution=True, + output_pydantic=SearchResult +) + +# 7. Example usage functions +def run_sync_example(): + """Run synchronous example""" + display_instruction("\nRunning Synchronous Example...", console) + agents = PraisonAIAgents( + agents=[sync_agent], + tasks=[sync_task], + verbose=1, + process="sequential" + ) + result = agents.start() + display_interaction("Sync Example", f"Result: {result}", markdown=True, console=console) + +async def run_async_example(): + """Run asynchronous example""" + display_instruction("\nRunning Asynchronous Example...", console) + agents = PraisonAIAgents( + agents=[async_agent], + tasks=[async_task], + verbose=1, + process="sequential" + ) + result = await agents.astart() + display_interaction("Async Example", f"Result: {result}", markdown=True, console=console) + +async def run_mixed_example(): + """Run mixed sync/async example""" + display_instruction("\nRunning Mixed Sync/Async Example...", console) + agents = PraisonAIAgents( + agents=[sync_agent, async_agent], + tasks=[sync_task, async_task], + verbose=1, + process="sequential" + ) + result = await agents.astart() + display_interaction("Mixed Example", f"Result: {result}", markdown=True, console=console) + +async def run_workflow_example(): + """Run workflow example with both sync and async tasks""" + display_instruction("\nRunning Workflow Example...", console) + agents = PraisonAIAgents( + agents=[sync_agent, async_agent], + tasks=[workflow_sync_task, workflow_async_task], + verbose=1, + process="workflow" + ) + result = await agents.astart() + display_interaction("Workflow Example", f"Result: {result}", markdown=True, console=console) + +# 8. Main execution +async def main(): + """Main execution function""" + display_instruction("Starting PraisonAI Agents Examples...", console) + + try: + # Run sync example in a separate thread to not block the event loop + loop = asyncio.get_event_loop() + await loop.run_in_executor(None, run_sync_example) + + # Run async examples + await run_async_example() + await run_mixed_example() + await run_workflow_example() + + if error_logs: + display_error("\nErrors encountered during execution:", console) + for error in error_logs: + display_error(error, console) + except Exception as e: + display_error(f"Error in main execution: {e}", console) + error_logs.append(str(e)) + +if __name__ == "__main__": + # Run the main function + asyncio.run(main()) \ No newline at end of file diff --git a/cookbooks/general/async_example_full.py b/cookbooks/general/async_example_full.py new file mode 100644 index 00000000..22903b12 --- /dev/null +++ b/cookbooks/general/async_example_full.py @@ -0,0 +1,152 @@ +import asyncio +import time +from typing import List, Dict +from praisonaiagents import Agent, Task, PraisonAIAgents, TaskOutput +from duckduckgo_search import DDGS +from pydantic import BaseModel + +# 1. Define output model for structured results +class SearchResult(BaseModel): + query: str + results: List[Dict[str, str]] + total_results: int + +# 2. Define async tool +async def async_search_tool(query: str) -> Dict: + """Perform asynchronous search and return structured results.""" + await asyncio.sleep(1) # Simulate network delay + try: + results = [] + ddgs = DDGS() + for result in ddgs.text(keywords=query, max_results=5): + results.append({ + "title": result.get("title", ""), + "url": result.get("href", ""), + "snippet": result.get("body", "") + }) + + return { + "query": query, + "results": results, + "total_results": len(results) + } + except Exception as e: + print(f"Error during async search: {e}") + return { + "query": query, + "results": [], + "total_results": 0 + } + +# 3. Define async callback +async def async_callback(output: TaskOutput): + await asyncio.sleep(1) # Simulate processing + if output.output_format == "JSON": + print(f"Processed JSON result: {output.json_dict}") + elif output.output_format == "Pydantic": + print(f"Processed Pydantic result: {output.pydantic}") + +# 4. Create specialized agents +async_agent = Agent( + name="AsyncSearchAgent", + role="Search Specialist", + goal="Perform fast parallel searches with structured results", + backstory="Expert in efficient data retrieval and parallel search operations", + tools=[async_search_tool], + self_reflect=False, + verbose=True, + markdown=True +) + +summary_agent = Agent( + name="SummaryAgent", + role="Research Synthesizer", + goal="Create concise summaries from multiple search results", + backstory="Expert in analyzing and synthesizing information from multiple sources", + self_reflect=True, + verbose=True, + markdown=True +) + +# 5. Create async tasks +async_task = Task( + name="async_search", + description="Search for 'Async programming' and return results in JSON format with query, results array, and total_results count.", + expected_output="SearchResult model with structured data", + agent=async_agent, + async_execution=True, + callback=async_callback, + output_json=SearchResult +) + +async def run_parallel_tasks(): + """Run multiple async tasks in parallel""" + print("\nRunning Parallel Async Tasks...") + + # Define different search topics + search_topics = [ + "Latest AI Developments 2024", + "Machine Learning Best Practices", + "Neural Networks Architecture" + ] + + # Create tasks for different topics + parallel_tasks = [ + Task( + name=f"search_task_{i}", + description=f"Search for '{topic}' and return structured results with query details and findings.", + expected_output="SearchResult model with search data", + agent=async_agent, + async_execution=True, + callback=async_callback, + output_json=SearchResult + ) for i, topic in enumerate(search_topics) + ] + + # Create summarization task + summary_task = Task( + name="summary_task", + description="Analyze all search results and create a concise summary highlighting key findings, patterns, and implications.", + expected_output="Structured summary with key findings and insights", + agent=summary_agent, + async_execution=False, + callback=async_callback, + context=parallel_tasks + ) + + # Create a single PraisonAIAgents instance with both agents + agents = PraisonAIAgents( + agents=[async_agent, summary_agent], + tasks=parallel_tasks + [summary_task], + verbose=1, + process="sequential" + ) + + # Run all tasks + results = await agents.astart() + print(f"Tasks Results: {results}") + + # Return results in a serializable format + return { + "search_results": { + "task_status": {k: v for k, v in results["task_status"].items() if k != summary_task.id}, + "task_results": [str(results["task_results"][i]) if results["task_results"][i] else None + for i in range(len(parallel_tasks))] + }, + "summary": str(results["task_results"][summary_task.id]) if results["task_results"].get(summary_task.id) else None, + "topics": search_topics + } + +# 6. Main execution +async def main(): + """Main execution function""" + print("Starting Async AI Agents Examples...") + + try: + await run_parallel_tasks() + except Exception as e: + print(f"Error in main execution: {e}") + +if __name__ == "__main__": + # Run the main function + asyncio.run(main()) diff --git a/cookbooks/general/async_example_full_multigroups.py b/cookbooks/general/async_example_full_multigroups.py new file mode 100644 index 00000000..5d4275c3 --- /dev/null +++ b/cookbooks/general/async_example_full_multigroups.py @@ -0,0 +1,248 @@ +import asyncio +import time +from typing import List, Dict +from praisonaiagents import Agent, Task, PraisonAIAgents, TaskOutput +from duckduckgo_search import DDGS +from pydantic import BaseModel + +# 1. Define output model for structured results +class SearchResult(BaseModel): + query: str + results: List[Dict[str, str]] + total_results: int + +# 2. Define async tool +async def async_search_tool(query: str) -> Dict: + """ + Asynchronous search using DuckDuckGo. + Args: + query (str): The search query. + Returns: + dict: Search results in SearchResult model format + """ + await asyncio.sleep(1) # Simulate network delay + try: + results = [] + ddgs = DDGS() + for result in ddgs.text(keywords=query, max_results=5): + results.append({ + "title": result.get("title", ""), + "url": result.get("href", ""), + "snippet": result.get("body", "") + }) + + # Format response to match SearchResult model + return { + "query": query, + "results": results, + "total_results": len(results) + } + except Exception as e: + print(f"Error during async search: {e}") + return { + "query": query, + "results": [], + "total_results": 0 + } + +# 3. Define async callback +async def async_callback(output: TaskOutput): + await asyncio.sleep(1) # Simulate processing + if output.output_format == "JSON": + print(f"Processed JSON result: {output.json_dict}") + elif output.output_format == "Pydantic": + print(f"Processed Pydantic result: {output.pydantic}") + +# 4. Create specialized agents +async_agent = Agent( + name="AsyncSearchAgent", + role="Asynchronous Search Specialist", + goal="Perform fast and efficient asynchronous searches with structured results", + backstory="Expert in parallel search operations and data retrieval", + tools=[async_search_tool], + self_reflect=False, + verbose=True, + markdown=True +) + +summary_agent = Agent( + name="SummaryAgent", + role="Research Synthesizer", + goal="Create comprehensive summaries and identify patterns across multiple search results", + backstory="""Expert in analyzing and synthesizing information from multiple sources. +Skilled at identifying patterns, trends, and connections between different topics. +Specializes in creating clear, structured summaries that highlight key insights.""", + self_reflect=True, # Enable self-reflection for better summary quality + verbose=True, + markdown=True +) + +# 5. Create async tasks +async_task = Task( + name="async_search", + description="""Search for 'Async programming' and return results in the following JSON format: +{ + "query": "the search query", + "results": [ + { + "title": "result title", + "url": "result url", + "snippet": "result snippet" + } + ], + "total_results": number of results +}""", + expected_output="SearchResult model with query details and results", + agent=async_agent, + async_execution=True, + callback=async_callback, + output_json=SearchResult +) + +# 6. Example usage functions +async def run_single_task(): + """Run single async task""" + print("\nRunning Single Async Task...") + agents = PraisonAIAgents( + agents=[async_agent], + tasks=[async_task], + verbose=1, + process="sequential" + ) + result = await agents.astart() + print(f"Single Task Result: {result}") + +async def run_parallel_tasks(): + """Run multiple async tasks in parallel""" + print("\nRunning Parallel Async Tasks...") + + # Define different search topics + search_topics = [ + "Latest AI Developments 2024", + "Machine Learning Best Practices", + "Neural Networks Architecture" + ] + + # Create tasks for different topics + parallel_tasks = [ + Task( + name=f"search_task_{i}", + description=f"""Search for '{topic}' and return results in the following JSON format: +{{ + "query": "{topic}", + "results": [ + {{ + "title": "result title", + "url": "result url", + "snippet": "result snippet" + }} + ], + "total_results": number of results +}}""", + expected_output="SearchResult model with detailed information", + agent=async_agent, + async_execution=True, + callback=async_callback, + output_json=SearchResult + ) for i, topic in enumerate(search_topics) + ] + + # Create summarization task with the specialized summary agent + summary_task = Task( + name="summary_task", + description="""As a Research Synthesizer, analyze the search results and create a comprehensive summary. Your task: + +1. Analyze Results: + - Review all search results thoroughly + - Extract key findings from each topic + - Identify main themes and concepts + +2. Find Connections: + - Identify relationships between topics + - Spot common patterns or contradictions + - Note emerging trends across sources + +3. Create Structured Summary: + - Main findings per topic + - Cross-cutting themes + - Emerging trends + - Practical implications + - Future directions + +4. Quality Checks: + - Ensure all topics are covered + - Verify accuracy of connections + - Confirm clarity of insights + - Validate practical relevance + +Present the summary in a clear, structured format with sections for findings, patterns, trends, and implications.""", + expected_output="""A comprehensive research synthesis containing: +- Detailed findings from each search topic +- Cross-topic patterns and relationships +- Emerging trends and their implications +- Practical applications and future directions""", + agent=summary_agent, # Use the specialized summary agent + async_execution=False, # Run synchronously after search tasks + callback=async_callback + ) + + # First run parallel search tasks + agents = PraisonAIAgents( + agents=[async_agent], + tasks=parallel_tasks, # Only run search tasks first + verbose=1, + process="sequential" + ) + search_results = await agents.astart() + print(f"Search Tasks Results: {search_results}") + + # Create task objects with results for context + completed_tasks = [] + for i, topic in enumerate(search_topics): + task = Task( + name=f"search_task_{i}_result", + description=f"Search results for: {topic}", + expected_output="Search results from previous task", + agent=async_agent, + result=search_results["task_results"][i] + ) + completed_tasks.append(task) + + # Update summary task with context from search results + summary_task.context = completed_tasks + + # Run summarization task with summary agent + summary_agents = PraisonAIAgents( + agents=[summary_agent], # Use summary agent for synthesis + tasks=[summary_task], + verbose=1, + process="sequential" + ) + summary_result = await summary_agents.astart() + print(f"Summary Task Result: {summary_result}") + + # Return results in a serializable format + return { + "search_results": { + "task_status": search_results["task_status"], + "task_results": [str(result) if result else None for result in search_results["task_results"]] + }, + "summary": str(summary_result), + "topics": search_topics + } + +# 7. Main execution +async def main(): + """Main execution function""" + print("Starting Async AI Agents Examples...") + + try: + # Run different async patterns + await run_single_task() + await run_parallel_tasks() + except Exception as e: + print(f"Error in main execution: {e}") + +if __name__ == "__main__": + # Run the main function + asyncio.run(main()) diff --git a/cookbooks/general/auto_agents_example.py b/cookbooks/general/auto_agents_example.py new file mode 100644 index 00000000..bdf7d5f7 --- /dev/null +++ b/cookbooks/general/auto_agents_example.py @@ -0,0 +1,11 @@ +from praisonaiagents import AutoAgents +from praisonaiagents.tools import duckduckgo + +agents = AutoAgents( + instructions="Search for information about AI Agents", + tools=[duckduckgo], + process="sequential", + verbose=True +) + +agents.start() \ No newline at end of file diff --git a/cookbooks/general/code_agents_example.py b/cookbooks/general/code_agents_example.py new file mode 100644 index 00000000..dfac1f64 --- /dev/null +++ b/cookbooks/general/code_agents_example.py @@ -0,0 +1,50 @@ +from praisonaiagents import Agent, Task, PraisonAIAgents +import json +from e2b_code_interpreter import Sandbox + +def code_interpreter(code: str): + """ + A function to demonstrate running Python code dynamically using e2b_code_interpreter. + """ + print(f"\n{'='*50}\n> Running following AI-generated code:\n{code}\n{'='*50}") + exec_result = Sandbox().run_code(code) + if exec_result.error: + print("[Code Interpreter error]", exec_result.error) + return {"error": str(exec_result.error)} + else: + results = [] + for result in exec_result.results: + if hasattr(result, '__iter__'): + results.extend(list(result)) + else: + results.append(str(result)) + logs = {"stdout": list(exec_result.logs.stdout), "stderr": list(exec_result.logs.stderr)} + return json.dumps({"results": results, "logs": logs}) + +code_agent = Agent( + name="code_agent", + llm="gpt-4o-mini", + backstory="Expert in writing Python scripts", + self_reflect=False +) +execution_agent = Agent( + name="execution_agent", + llm="gpt-4o-mini", + backstory="Expert in executing Python scripts", + self_reflect=False, + tools=[code_interpreter] +) + +code_agent_task = Task( + description="Write a simple Python script to print 'Hello, World!'", + expected_output="A Python script that prints 'Hello, World!'", + agent=code_agent +) +execution_agent_task = Task( + description="Execute the Python script", + expected_output="The output of the Python script", + agent=execution_agent +) + +agents = PraisonAIAgents(agents=[code_agent, execution_agent], tasks=[code_agent_task, execution_agent_task]) +agents.start() \ No newline at end of file diff --git a/cookbooks/general/example_callback.py b/cookbooks/general/example_callback.py new file mode 100644 index 00000000..f8775872 --- /dev/null +++ b/cookbooks/general/example_callback.py @@ -0,0 +1,204 @@ +from praisonaiagents import ( + Agent, + Task, + PraisonAIAgents, + error_logs, + register_display_callback, + sync_display_callbacks, + async_display_callbacks +) +from duckduckgo_search import DDGS +from rich.console import Console +import json +from datetime import datetime +import logging + +# Setup logging +logging.basicConfig( + filename='ai_interactions.log', + level=logging.INFO, + format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' +) + +# Callback functions for different display types +def interaction_callback(message=None, response=None, markdown=None, generation_time=None): + """Callback for display_interaction""" + logging.info(f""" + === INTERACTION === + Time: {datetime.now()} + Generation Time: {generation_time}s + Message: {message} + Response: {response} + Markdown: {markdown} + """) + +def error_callback(message=None): + """Callback for display_error""" + logging.error(f""" + === ERROR === + Time: {datetime.now()} + Message: {message} + """) + +def tool_call_callback(message=None): + """Callback for display_tool_call""" + logging.info(f""" + === TOOL CALL === + Time: {datetime.now()} + Message: {message} + """) + +def instruction_callback(message=None): + """Callback for display_instruction""" + logging.info(f""" + === INSTRUCTION === + Time: {datetime.now()} + Message: {message} + """) + +def self_reflection_callback(message=None): + """Callback for display_self_reflection""" + logging.info(f""" + === SELF REFLECTION === + Time: {datetime.now()} + Message: {message} + """) + +def generating_callback(content=None, elapsed_time=None): + """Callback for display_generating""" + logging.info(f""" + === GENERATING === + Time: {datetime.now()} + Content: {content} + Elapsed Time: {elapsed_time} + """) + +# Register all callbacks +register_display_callback('interaction', interaction_callback) +register_display_callback('error', error_callback) +register_display_callback('tool_call', tool_call_callback) +register_display_callback('instruction', instruction_callback) +register_display_callback('self_reflection', self_reflection_callback) +# register_display_callback('generating', generating_callback) + +def task_callback(output): + """Callback for task completion""" + logging.info(f""" + === TASK COMPLETED === + Time: {datetime.now()} + Description: {output.description} + Agent: {output.agent} + Output: {output.raw[:200]}... + """) + +def internet_search_tool(query) -> list: + """ + Perform a search using DuckDuckGo. + + Args: + query (str): The search query. + + Returns: + list: A list of search result titles and URLs. + """ + try: + results = [] + ddgs = DDGS() + for result in ddgs.text(keywords=query, max_results=10): + results.append({ + "title": result.get("title", ""), + "url": result.get("href", ""), + "snippet": result.get("body", "") + }) + return results + + except Exception as e: + print(f"Error during DuckDuckGo search: {e}") + return [] + +def main(): + # Create agents + researcher = Agent( + name="Researcher", + role="Senior Research Analyst", + goal="Uncover cutting-edge developments in AI and data science", + backstory="""You are an expert at a technology research group, + skilled in identifying trends and analyzing complex data.""", + verbose=True, + allow_delegation=False, + tools=[internet_search_tool], + llm="gpt-4o", + markdown=True, + reflect_llm="gpt-4o", + min_reflect=2, + max_reflect=4 + ) + + writer = Agent( + name="Writer", + role="Tech Content Strategist", + goal="Craft compelling content on tech advancements", + backstory="""You are a content strategist known for + making complex tech topics interesting and easy to understand.""", + verbose=True, + allow_delegation=True, + llm="gpt-4o", + tools=[], + markdown=True + ) + + # Create tasks with callbacks + task1 = Task( + name="research_task", + description="""Analyze 2024's AI advancements. + Find major trends, new technologies, and their effects.""", + expected_output="""A detailed report on 2024 AI advancements""", + agent=researcher, + tools=[internet_search_tool], + callback=task_callback + ) + + task2 = Task( + name="writing_task", + description="""Create a blog post about major AI advancements using the insights you have. + Make it interesting, clear, and suited for tech enthusiasts. + It should be at least 4 paragraphs long.""", + expected_output="A blog post of at least 4 paragraphs", + agent=writer, + context=[task1], + callback=task_callback, + tools=[] + ) + + task3 = Task( + name="json_task", + description="""Create a json object with a title of "My Task" and content of "My content".""", + expected_output="""JSON output with title and content""", + agent=researcher, + callback=task_callback + ) + + task4 = Task( + name="save_output_task", + description="""Save the AI blog post to a file""", + expected_output="""File saved successfully""", + agent=writer, + context=[task2], + output_file='test.txt', + create_directory=True, + callback=task_callback + ) + + # Create and run agents manager + agents = PraisonAIAgents( + agents=[researcher, writer], + tasks=[task1, task2, task3, task4], + verbose=True, + process="sequential", + manager_llm="gpt-4o" + ) + + agents.start() + +if __name__ == "__main__": + main() diff --git a/cookbooks/general/example_custom_tools.py b/cookbooks/general/example_custom_tools.py new file mode 100644 index 00000000..969faf19 --- /dev/null +++ b/cookbooks/general/example_custom_tools.py @@ -0,0 +1,151 @@ +from praisonaiagents import Agent, Task, PraisonAIAgents +from typing import List, Dict, Union +from duckduckgo_search import DDGS +from langchain_community.tools import YouTubeSearchTool +from langchain_community.utilities import WikipediaAPIWrapper + +# 1. Tool +def internet_search_tool(query: str) -> List[Dict]: + """ + Perform a search using DuckDuckGo. + + Args: + query (str): The search query. + + Returns: + list: A list of search result titles, URLs, and snippets. + """ + try: + results = [] + ddgs = DDGS() + for result in ddgs.text(keywords=query, max_results=10): + results.append({ + "title": result.get("title", ""), + "url": result.get("href", ""), + "snippet": result.get("body", "") + }) + return results + + except Exception as e: + print(f"Error during DuckDuckGo search: {e}") + return [] + +def youtube_search_tool(query: str, inspect: bool = False, max_results: int = 2): + """ + Provide a custom wrapper around the YouTubeSearchTool. + + Args: + query (str): The search query for YouTube. + inspect (bool): If True, returns tool inspection info instead of search results. + max_results (int): Maximum number of results to return (default: 2). + Returns: + Union[List[str], dict]: List of YouTube video URLs or tool inspection info. + """ + yt = YouTubeSearchTool() + + if inspect: + inspection_info = { + "type": type(yt), + "attributes": [attr for attr in dir(yt) if not attr.startswith('_')], + "methods": { + "run": getattr(yt, 'run', None), + "arun": getattr(yt, 'arun', None) + }, + "properties": { + "name": getattr(yt, 'name', 'youtube_search'), + "description": getattr(yt, 'description', 'Search YouTube videos'), + "return_direct": getattr(yt, 'return_direct', False) + } + } + return inspection_info + + # Format query with max_results + formatted_query = f"{query}, {max_results}" + return yt.run(formatted_query) + +def wikipedia_search_tool(query: str, inspect: bool = False, max_chars: int = 4000, top_k: int = 3): + """ + Provide a custom wrapper around langchain_community's WikipediaAPIWrapper. + + Args: + query (str): A search query for Wikipedia. + inspect (bool): If True, returns tool inspection info instead of search results. + max_chars (int): Maximum characters to return (default: 4000). + top_k (int): Number of top results to consider (default: 3). + Returns: + Union[str, dict]: Summary from Wikipedia or tool inspection info if inspect=True. + """ + w = WikipediaAPIWrapper( + top_k_results=top_k, + doc_content_chars_max=max_chars, + lang='en' + ) + + if inspect: + inspection_info = { + "type": type(w), + "attributes": [attr for attr in dir(w) if not attr.startswith('_')], + "methods": { + "run": getattr(w, 'run', None), + "arun": getattr(w, 'arun', None) + }, + "properties": { + "name": "wikipedia", + "description": "Search and get summaries from Wikipedia", + "top_k": w.top_k_results, + "lang": w.lang, + "max_chars": w.doc_content_chars_max + } + } + return inspection_info + + try: + result = w.run(query) + return result + except Exception as e: + return f"Error searching Wikipedia: {str(e)}" + +# 2. Agent +data_agent = Agent( + name="DataCollector", + role="Search Specialist", + goal="Perform internet searches to collect relevant information.", + backstory="Expert in finding and organizing internet data from multiple sources.", + tools=[internet_search_tool, youtube_search_tool, wikipedia_search_tool], + self_reflect=False +) + +# 3. Tasks +collect_task = Task( + description="Perform an internet search using the query: 'AI job trends in 2024'. Return results as a list of title, URL, and snippet.", + expected_output="List of search results with titles, URLs, and snippets.", + agent=data_agent, + name="collect_data", + is_start=True, + next_tasks=["validate_data"] +) + +validate_task = Task( + description="""Validate the collected data. Check if: + 1. At least 5 results are returned. + 2. Each result contains a title and a URL. + Return validation_result as 'valid' or 'invalid' only no other text.""", + expected_output="Validation result indicating if data is valid or invalid.", + agent=data_agent, + name="validate_data", + task_type="decision", + condition={ + "valid": [], # End the workflow on valid data + "invalid": ["collect_data"] # Retry data collection on invalid data + }, +) + +# 4. Workflow +agents = PraisonAIAgents( + agents=[data_agent], + tasks=[collect_task, validate_task], + verbose=1, + process="workflow" +) + +agents.start() \ No newline at end of file diff --git a/cookbooks/general/example_sequential.py b/cookbooks/general/example_sequential.py new file mode 100644 index 00000000..139bb8ee --- /dev/null +++ b/cookbooks/general/example_sequential.py @@ -0,0 +1,141 @@ +from praisonaiagents import Agent, Task, PraisonAIAgents, error_logs +from duckduckgo_search import DDGS + +def my_callback(output): + print(f"Callback Task output: {output}") + +def internet_search_tool(query) -> list: + """ + Perform a search using DuckDuckGo. + + Args: + query (str): The search query. + + Returns: + list: A list of search result titles and URLs. + """ + try: + results = [] + ddgs = DDGS() + for result in ddgs.text(keywords=query, max_results=10): + results.append({ + "title": result.get("title", ""), + "url": result.get("href", ""), + "snippet": result.get("body", "") + }) + return results + + except Exception as e: + print(f"Error during DuckDuckGo search: {e}") + return [] + +# Create agents +researcher = Agent( + name="Researcher", + role="Senior Research Analyst", + goal="Uncover cutting-edge developments in AI and data science", + backstory="""You are an expert at a technology research group, + skilled in identifying trends and analyzing complex data.""", + verbose=True, + allow_delegation=False, + tools=[internet_search_tool], + llm="gpt-4o", + markdown=True, + reflect_llm="gpt-4o", + min_reflect=2, + max_reflect=4 +) +writer = Agent( + name="Writer", + role="Tech Content Strategist", + goal="Craft compelling content on tech advancements", + backstory="""You are a content strategist known for + making complex tech topics interesting and easy to understand.""", + verbose=True, + allow_delegation=True, + llm="gpt-4o", + tools=[], + markdown=True +) + +# Create tasks +task1 = Task( + name="research_task", + description="""Analyze 2024's AI advancements. + Find major trends, new technologies, and their effects.""", + expected_output="""A detailed report on 2024 AI advancements""", + agent=researcher, + tools=[internet_search_tool] +) + +task2 = Task( + name="writing_task", + description="""Create a blog post about major AI advancements using the insights you have. + Make it interesting, clear, and suited for tech enthusiasts. + It should be at least 4 paragraphs long. + Also, call the get_weather tool to get the weather in Paris.""", + expected_output="A blog post of at least 4 paragraphs, and weather in Paris", + agent=writer, + context=[task1], + callback=my_callback, + tools=[] +) + +task3 = Task( + name="json_task", + description="""Create a json object with a title of "My Task" and content of "My content".""", + expected_output="""JSON output with title and content""", + agent=researcher, +) + +task4 = Task( + name="save_output_task", + description="""Save the AI blog post to a file""", + expected_output="""File saved successfully""", + agent=writer, + context=[task2], + output_file='outputs/ai_blog_post.txt', + create_directory=True +) + +# Create and run agents manager +agents = PraisonAIAgents( + agents=[researcher, writer], + tasks=[task1, task2, task3, task4], + verbose=False, + process="sequential", # "sequential" or "hierarchical" + manager_llm="gpt-4o" +) + +result = agents.start() + +# Print results and error summary +print("\n=== Task Results ===") +for task_id, task_status in result['task_status'].items(): + print(f"Task {task_id}: {task_status}") + if task_result := result['task_results'].get(task_id): + print(f"Output: {task_result.raw[:200]}...") # Show first 200 chars + +# Print task details +print("\n=== Task Details ===") +for i in range(4): + print(agents.get_task_details(i)) + +# Print agent details +print("\n=== Agent Details ===") +print(agents.get_agent_details('Researcher')) +print(agents.get_agent_details('Writer')) + +# Print any errors +if error_logs: + print("\n=== Error Summary ===") + for err in error_logs: + print(f"- {err}") + if "parsing self-reflection json" in err: + print(" Reason: The self-reflection JSON response was not valid JSON.") + elif "Error: Task with ID" in err: + print(" Reason: Task ID referenced does not exist.") + elif "saving task output to file" in err: + print(" Reason: Possible file permissions or invalid path.") + else: + print(" Reason not identified") \ No newline at end of file diff --git a/cookbooks/general/langchain_example.py b/cookbooks/general/langchain_example.py new file mode 100644 index 00000000..aeddca42 --- /dev/null +++ b/cookbooks/general/langchain_example.py @@ -0,0 +1,30 @@ +from praisonaiagents import Agent, Task, PraisonAIAgents +from langchain_community.tools import YouTubeSearchTool +from langchain_community.utilities import WikipediaAPIWrapper + +# Create an agent with both tools +agent = Agent( + name="SearchAgent", + role="Research Assistant", + goal="Search for information from multiple sources", + backstory="I am an AI assistant that can search YouTube and Wikipedia.", + tools=[YouTubeSearchTool, WikipediaAPIWrapper], + self_reflect=False +) + +# Create tasks to demonstrate both tools +task = Task( + name="search_task", + description="Search for information about 'AI advancements' on both YouTube and Wikipedia", + expected_output="Combined information from YouTube videos and Wikipedia articles", + agent=agent +) + +# Create and start the workflow +agents = PraisonAIAgents( + agents=[agent], + tasks=[task], + verbose=True +) + +agents.start() \ No newline at end of file diff --git a/cookbooks/general/memory_example.py b/cookbooks/general/memory_example.py new file mode 100644 index 00000000..c4e17c1b --- /dev/null +++ b/cookbooks/general/memory_example.py @@ -0,0 +1,183 @@ +from praisonaiagents import Agent, Task, PraisonAIAgents +import logging +import os + +def main(): + # Initialize memory config + memory_config = { + "provider": "rag", + "use_embedding": True, + "storage": { + "type": "sqlite", + "path": "./.praison/memory.db" + }, + "rag_db_path": "./.praison/chroma_db" + } + + # Test facts + fact1 = "The capital city of Jujuha is Hahanu and its population is 102300" + fact2 = "Three main ingredients in a classic proloder are eggs, sugar, and flour" + fact3 = "The year the first Josinga was released is 2007" + + # # Check if database exists + # if os.path.exists("./memory.db"): + # logger.info("Found existing memory database") + # else: + # logger.info("Creating new memory database") + + # Create task config (without memory config since it's moved to PraisonAIAgents) + task_config = {} + + # Create agents with different roles + researcher = Agent( + role="Research Analyst", + goal="Research and document key information about topics", + backstory="Expert at analyzing and storing information in memory", + llm="gpt-4o-mini" + ) + + retriever = Agent( + role="Information Retriever", + goal="Retrieve and verify stored information from memory", + backstory="Specialist in searching and validating information from memory", + llm="gpt-4o-mini" + ) + + # Task 1: Process the facts + store_task = Task( + description=f""" + Process and analyze this information: + 1. {fact1} + 2. {fact2} + 3. {fact3} + + Provide a clear summary of each fact. + """, + expected_output=""" + Clear statements summarizing each fact. + Example format: + 1. [Summary of fact 1] + 2. [Summary of fact 2] + 3. [Summary of fact 3] + """, + agent=researcher + ) + + # Task 2: Write essay about AI + verify_task = Task( + description=""" + write few points about AI + """, + expected_output="Points about AI", + agent=retriever + ) + + # Task 3: Query memory + query_task = Task( + description=""" + Using ONLY information found in memory: + 1. What is stored in memory about Hahanu? + 2. What ingredients for proloder are recorded in memory? + 3. What year is stored in memory for the Josinga release? + + For each answer, cite the memory record you found. + """, + expected_output="Answers based solely on memory records with citations", + agent=retriever + ) + + # Task 4: Query both short-term and long-term memory + query_both_task = Task( + description=""" + Using ONLY information found in memory: + 1. What is stored in both short-term and long-term memory about Jujuha? + 2. What ingredients for proloder are recorded in both short-term and long-term memory? + 3. What year is stored in both short-term and long-term memory for the Josinga release? + + For each answer, cite the memory record you found. + """, + expected_output="Answers based solely on memory records with citations", + agent=retriever + ) + + # Initialize PraisonAIAgents with memory configuration + agents = PraisonAIAgents( + agents=[researcher, retriever], + tasks=[store_task, verify_task, query_task, query_both_task], + verbose=True, # Use same verbose level as memory + memory=True, + embedder={ + "provider": "openai", + "config": { + "model": "text-embedding-3-small" + } + } + ) + + # agents = PraisonAIAgents( + # agents=[researcher, retriever], + # tasks=[store_task, verify_task, query_task, query_both_task], + # verbose=True, # Use same verbose level as memory + # memory=True + # ) + + # Execute tasks + print("\nExecuting Memory Test Tasks...") + print("-" * 50) + agents.start() + + # Use shared memory for final checks + memory = agents.shared_memory + + # Test memory retrieval with different quality thresholds + if memory: + print("\nFinal Memory Check:") + print("-" * 50) + + queries = ["Jujuha", "proloder", "Josinga"] + for query in queries: + print(f"\nSearching memory for: {query}") + + # Search in both short-term and long-term memory + print("\nShort-term memory results:") + stm_results = memory.search_short_term(query) + if stm_results: + for item in stm_results: + print(f"Content: {item.get('content', '')[:200]}") + if 'meta' in item: + print(f"Metadata: {item['meta']}") + print("-" * 20) + else: + print("No results found in short-term memory") + + print("\nLong-term memory results:") + ltm_results = memory.search_long_term(query) + if ltm_results: + for item in ltm_results: + print(f"Content: {item.get('text', '')[:200]}") + if 'metadata' in item: + print(f"Metadata: {item['metadata']}") + print("-" * 20) + else: + print("No results found in long-term memory") + + # Also check ChromaDB if using RAG + if memory.use_rag and hasattr(memory, "chroma_col"): + print("\nChromaDB results:") + try: + all_items = memory.chroma_col.get() + print(f"Found {len(all_items['ids'])} items in ChromaDB") + for i in range(len(all_items['ids'])): + print(f"ID: {all_items['ids'][i]}") + print(f"Content: {all_items['documents'][i][:200]}") + print(f"Metadata: {all_items['metadatas'][i]}") + print("-" * 20) + except Exception as e: + print(f"Error querying ChromaDB: {e}") + + print("-" * 30) + else: + print("\nNo memory available for final checks") + +if __name__ == "__main__": + main() diff --git a/cookbooks/general/memory_simple.py b/cookbooks/general/memory_simple.py new file mode 100644 index 00000000..52c0bb70 --- /dev/null +++ b/cookbooks/general/memory_simple.py @@ -0,0 +1,63 @@ +from praisonaiagents.agents.agents import Agent, Task, PraisonAIAgents +from praisonaiagents.tools import duckduckgo + +# Test facts +fact1 = "The capital city of Jujuha is Hahanu and its population is 102300" +fact2 = "Three main ingredients in a classic proloder are eggs, sugar, and flour" +fact3 = "The year the first Josinga was released is 2007" + +fact_agent = Agent( + name="Fact Agent", + instructions="You are a fact agent, you store and retrieve facts in memory", + llm="gpt-4o-mini" +) + +research_agent = Agent( + name="Research Agent", + instructions="You are a research analyst, you research and document key points about topics", + llm="gpt-4o-mini" +) + +blog_agent = Agent( + name="Blog Agent", + instructions="You are a blog writer, you write a blog post about the research", + llm="gpt-4o-mini" +) + +fact_task = Task( + description="Store the following facts in memory: " + fact1 + ", " + fact2 + ", " + fact3, + agent=fact_agent +) + +research_task = Task( + description="Research and document 2 key points about AI", + agent=research_agent +) + +research_task2 = Task( + description="Research and document 2 key points about AI in healthcare", + agent=research_agent +) + +research_task3 = Task( + description="Research and document 2 key points about AI in education", + agent=research_agent +) + +research_task4 = Task( + description="Research and document 2 key points about AI in finance", + agent=research_agent +) + +blog_task = Task( + description="Write a blog post about Jujuha", + agent=blog_agent +) + +agents = PraisonAIAgents( + agents=[fact_agent, research_agent, blog_agent], + tasks=[fact_task, research_task, research_task2, research_task3, research_task4, blog_task], + memory=True +) + +agents.start() \ No newline at end of file diff --git a/cookbooks/general/mini_agents_example.py b/cookbooks/general/mini_agents_example.py new file mode 100644 index 00000000..08ad455f --- /dev/null +++ b/cookbooks/general/mini_agents_example.py @@ -0,0 +1,6 @@ +from praisonaiagents import Agent, Agents, Tools + +research_agent = Agent(instructions="You are a research agent to search internet about AI 2024", tools=[Tools.internet_search]) +summarise_agent = Agent(instructions="You are a summarize agent to summarise in points") +agents = Agents(agents=[research_agent, summarise_agent]) +agents.start() \ No newline at end of file diff --git a/cookbooks/general/multimodal.py b/cookbooks/general/multimodal.py new file mode 100644 index 00000000..68dde978 --- /dev/null +++ b/cookbooks/general/multimodal.py @@ -0,0 +1,59 @@ +from praisonaiagents import Agent, Task, PraisonAIAgents + +# Create Vision Analysis Agent +vision_agent = Agent( + name="VisionAnalyst", + role="Computer Vision Specialist", + goal="Analyze images and videos to extract meaningful information", + backstory="""You are an expert in computer vision and image analysis. + You excel at describing images, detecting objects, and understanding visual content.""", + llm="gpt-4o-mini", + self_reflect=False +) + +# 1. Task with Image URL +task1 = Task( + name="analyze_landmark", + description="Describe this famous landmark and its architectural features.", + expected_output="Detailed description of the landmark's architecture and significance", + agent=vision_agent, + images=["https://upload.wikimedia.org/wikipedia/commons/b/bf/Krakow_-_Kosciol_Mariacki.jpg"] +) + +# 2. Task with Local Image File +task2 = Task( + name="analyze_local_image", + description="What objects can you see in this image? Describe their arrangement.", + expected_output="Detailed description of objects and their spatial relationships", + agent=vision_agent, + images=["image.jpg"] +) + +# 3. Task with Video File +task3 = Task( + name="analyze_video", + description="""Watch this video and provide: + 1. A summary of the main events + 2. Key objects and people visible + 3. Any text or important information shown + 4. The overall context and setting""", + expected_output="Comprehensive analysis of the video content", + agent=vision_agent, + images=["video.mp4"] +) + +# Create PraisonAIAgents instance +agents = PraisonAIAgents( + agents=[vision_agent], + tasks=[task1, task2, task3], + process="sequential", + verbose=1 +) + +# Run all tasks +result = agents.start() + +# Print results +for task_id, task_result in result["task_results"].items(): + print(f"\nTask {task_id} Result:") + print(task_result.raw) \ No newline at end of file diff --git a/cookbooks/general/structured_agents_example.py b/cookbooks/general/structured_agents_example.py new file mode 100644 index 00000000..9aa90d36 --- /dev/null +++ b/cookbooks/general/structured_agents_example.py @@ -0,0 +1,56 @@ +from praisonaiagents import Agent, Task, PraisonAIAgents, Tools +from pydantic import BaseModel + +class AnalysisReport(BaseModel): + title: str + findings: str + summary: str + +# Create a researcher agent +researcher = Agent( + name="AIResearcher", + role="Technology Research Analyst", + goal="Analyze and structure information about AI developments", + backstory="Expert analyst specializing in AI technology trends", + verbose=True, + llm="gpt-4o-mini", + tools=[Tools.internet_search], + self_reflect=False +) + +# Create an analyst agent +analyst = Agent( + name="DataAnalyst", + role="Data Insights Specialist", + goal="Structure and analyze research findings", + backstory="Senior data analyst with expertise in pattern recognition", + verbose=True, + llm="gpt-4o-mini", + self_reflect=False +) + +# Define structured tasks +research_task = Task( + name="gather_research", + description="Research recent AI developments in 2024", + agent=researcher, + expected_output="Research findings" +) + +analysis_task = Task( + name="analyze_findings", + description="Analyze research findings and create structured report. No additional text or explanation.", + agent=analyst, + output_json=AnalysisReport, + expected_output="JSON object" +) + +# Initialize and run agents +agents = PraisonAIAgents( + agents=[researcher, analyst], + tasks=[research_task, analysis_task], + process="sequential", + verbose=True +) +result = agents.start() +print(result) diff --git a/cookbooks/general/structured_response_example.py b/cookbooks/general/structured_response_example.py new file mode 100644 index 00000000..115bc4d0 --- /dev/null +++ b/cookbooks/general/structured_response_example.py @@ -0,0 +1,95 @@ +from praisonaiagents import Agent +from pydantic import BaseModel +from typing import List, Optional + +# Define structured output models +class SearchResult(BaseModel): + title: str + url: Optional[str] + snippet: str + +class AnalysisReport(BaseModel): + topic: str + key_findings: List[str] + search_results: List[SearchResult] + summary: str + confidence_score: float + +def get_structured_analysis(query: str, verbose: bool = True) -> AnalysisReport: + """ + Performs a search and returns a structured analysis using an AI agent. + + Args: + query (str): The search query or topic to analyze + verbose (bool): Whether to show detailed output + + Returns: + AnalysisReport: A structured report containing the analysis + """ + # Create an agent with search capabilities + agent = Agent( + name="StructuredAnalyst", + role="Research Analyst", + goal="Analyze topics and provide structured reports", + backstory="Expert at gathering information and providing structured analysis", + verbose=verbose, + self_reflect=True, # Enable self-reflection for better quality + markdown=True, + llm="gpt-4o-mini" + ) + + # Create the analysis prompt + prompt = f""" +Analyze the following topic: "{query}" + +Provide a structured analysis in JSON format that matches this schema: +{{ + "topic": "string", + "key_findings": ["string"], + "search_results": [ + {{ + "title": "string", + "url": "string", + "snippet": "string" + }} + ], + "summary": "string", + "confidence_score": float (0-1) +}} + +Requirements: +1. Include at least 3 key findings +2. Include at least 2 relevant search results +3. Provide a comprehensive summary +4. Set confidence score based on quality of sources (0-1) + +Return ONLY the JSON object, no other text. +""" + + # Get structured response from agent + response = agent.chat( + prompt=prompt, + output_json=AnalysisReport # This ensures response matches our model + ) + + return AnalysisReport.model_validate_json(response) + +if __name__ == "__main__": + # Example usage + analysis = get_structured_analysis("Latest developments in AI agents and autonomous systems") + print(analysis) + # Print the structured results + print("\n=== Structured Analysis Report ===") + print(f"Topic: {analysis.topic}") + print("\nKey Findings:") + for i, finding in enumerate(analysis.key_findings, 1): + print(f"{i}. {finding}") + + print("\nSearch Results:") + for result in analysis.search_results: + print(f"\nTitle: {result.title}") + print(f"URL: {result.url}") + print(f"Snippet: {result.snippet}") + + print(f"\nSummary: {analysis.summary}") + print(f"Confidence Score: {analysis.confidence_score:.2f}") \ No newline at end of file diff --git a/cookbooks/general/tools_example.py b/cookbooks/general/tools_example.py new file mode 100644 index 00000000..891ea56b --- /dev/null +++ b/cookbooks/general/tools_example.py @@ -0,0 +1,30 @@ +from praisonaiagents import Agent, Task, PraisonAIAgents +from praisonaiagents.tools import get_article, get_news_sources, get_articles_from_source, get_trending_topics + +# Create Wikipedia agent +news_agent = Agent( + name="NewsAgent", + role="News Analyst", + goal="Collect and analyze news articles from various sources.", + backstory="Expert in news gathering and content analysis.", + tools=[get_article, get_news_sources, get_articles_from_source, get_trending_topics], + self_reflect=False +) + + +# Define research task +news_task = Task( + description="Analyze news articles about 'AI developments' from major tech news sources.", + expected_output="Summary of key AI developments with source articles.", + agent=news_agent, + name="ai_news" +) + + +# Run agent +agents = PraisonAIAgents( + agents=[news_agent], + tasks=[news_task], + process="sequential" +) +agents.start() diff --git a/cookbooks/general/workflow_example_basic.py b/cookbooks/general/workflow_example_basic.py new file mode 100644 index 00000000..d76b84c6 --- /dev/null +++ b/cookbooks/general/workflow_example_basic.py @@ -0,0 +1,74 @@ +from praisonaiagents import Agent, Task, PraisonAIAgents +from typing import List, Dict +from duckduckgo_search import DDGS + +# 1. Tool +def internet_search_tool(query: str) -> List[Dict]: + """ + Perform a search using DuckDuckGo. + + Args: + query (str): The search query. + + Returns: + list: A list of search result titles, URLs, and snippets. + """ + try: + results = [] + ddgs = DDGS() + for result in ddgs.text(keywords=query, max_results=10): + results.append({ + "title": result.get("title", ""), + "url": result.get("href", ""), + "snippet": result.get("body", "") + }) + return results + + except Exception as e: + print(f"Error during DuckDuckGo search: {e}") + return [] + +# 2. Agent +data_agent = Agent( + name="DataCollector", + role="Search Specialist", + goal="Perform internet searches to collect relevant information.", + backstory="Expert in finding and organising internet data.", + tools=[internet_search_tool], + self_reflect=False +) + +# 3. Tasks +collect_task = Task( + description="Perform an internet search using the query: 'AI job trends in 2024'. Return results as a list of title, URL, and snippet.", + expected_output="List of search results with titles, URLs, and snippets.", + agent=data_agent, + name="collect_data", + is_start=True, + next_tasks=["validate_data"] +) + +validate_task = Task( + description="""Validate the collected data. Check if: + 1. At least 5 results are returned. + 2. Each result contains a title and a URL. + Return validation_result as 'valid' or 'invalid' only no other text.""", + expected_output="Validation result indicating if data is valid or invalid.", + agent=data_agent, + name="validate_data", + task_type="decision", + condition={ + "valid": [], # End the workflow on valid data + "invalid": ["collect_data"] # Retry data collection on invalid data + }, +) + +# 4. AI Agents Workflow +agents = PraisonAIAgents( + agents=[data_agent], + tasks=[collect_task, validate_task], + verbose=1, + process="workflow" +) + +agents.start() \ No newline at end of file diff --git a/cookbooks/general/workflow_example_detailed.py b/cookbooks/general/workflow_example_detailed.py new file mode 100644 index 00000000..6dbab2a3 --- /dev/null +++ b/cookbooks/general/workflow_example_detailed.py @@ -0,0 +1,253 @@ +from praisonaiagents import Agent, Task, PraisonAIAgents +import random +from typing import List, Dict, Union +import json +from pydantic import BaseModel + +# Add Pydantic models for data validation +class Person(BaseModel): + name: str + age: int + job: str + city: str + salary: int + +class ProcessedPerson(Person): + salary_category: str + age_group: str + processing_status: str + +class DataList(BaseModel): + items: List[Dict] + +class ValidationResult(BaseModel): + validation_result: str + details: str = "" + +def random_data_of_individuals() -> List[Dict]: + """Generate random individual data""" + names = ["John", "Jane", "Mike", "Sarah", "David", "Emma"] + jobs = ["Engineer", "Doctor", "Teacher", "Artist", "Developer"] + cities = ["New York", "London", "Tokyo", "Paris", "Berlin"] + + data = [] + for _ in range(random.randint(3, 7)): + person = { + "name": random.choice(names), + "age": random.randint(25, 65), + "job": random.choice(jobs), + "city": random.choice(cities), + "salary": random.randint(30000, 120000) + } + data.append(person) + return data + +def process_data_of_individuals(data: Union[List[Dict], Dict, str]) -> Dict: + """Process individual data by adding categories and analysis""" + try: + print("\n[DEBUG] process_data_of_individuals input:", data) + print("[DEBUG] Current workflow state:") + print("- total_records:", workflow.get_state("total_records")) + print("- current_index:", workflow.get_state("current_index")) + print("- remaining:", workflow.get_state("remaining")) + + # Get the items list from the collect_task result + collect_result = None + for task in workflow.tasks.values(): + if task.name == "collect_data" and task.result: + try: + collect_data = json.loads(task.result.raw) + collect_result = collect_data.get("items", []) + print("[DEBUG] Found collect_data items:", len(collect_result)) + except: + print("[DEBUG] Failed to parse collect_data result") + + # Handle string input by trying to parse it as JSON + if isinstance(data, str): + if ":" in data and not data.strip().startswith("{"): + # Convert string format to dictionary + pairs = [pair.strip() for pair in data.split(",")] + data_dict = {} + for pair in pairs: + key, value = pair.split(":") + key = key.strip().lower() + value = value.strip() + if key == "age" or key == "salary": + value = int(value) + data_dict[key] = value + data = data_dict + else: + data = json.loads(data) + print("[DEBUG] Parsed data:", data) + + # Handle single record + if isinstance(data, dict): + person = data + # Initialize total records if not set + total_records = workflow.get_state("total_records") + if total_records is None and collect_result: + total_records = len(collect_result) + workflow.set_state("total_records", total_records) + print(f"[DEBUG] Initialized total_records to {total_records}") + + current_index = workflow.get_state("current_index", 0) + total_records = total_records or 1 + remaining = total_records - (current_index + 1) + workflow.set_state("remaining", remaining) + print(f"[DEBUG] Processing record {current_index + 1}/{total_records}") + + elif isinstance(data, list): + if len(data) == 0: + raise ValueError("Empty data list") + person = data[0] + workflow.set_state("total_records", len(data)) + workflow.set_state("current_index", 0) + workflow.set_state("remaining", len(data) - 1) + print(f"[DEBUG] First record from list of {len(data)} items") + else: + raise ValueError("Input must be a dictionary or list with at least one record") + + processed_person = person.copy() + + # Add salary category + salary = person.get("salary", 0) + if salary < 50000: + processed_person["salary_category"] = "entry" + elif salary < 90000: + processed_person["salary_category"] = "mid" + else: + processed_person["salary_category"] = "senior" + + # Add age group + age = person.get("age", 0) + if age < 35: + processed_person["age_group"] = "young" + elif age < 50: + processed_person["age_group"] = "mid" + else: + processed_person["age_group"] = "senior" + + # Add processing status using workflow state + remaining = workflow.get_state("remaining", 0) + current_index = workflow.get_state("current_index", 0) + total_records = workflow.get_state("total_records", 1) + + # Update current index for next iteration + workflow.set_state("current_index", current_index + 1) + + print(f"[DEBUG] Status check - remaining: {remaining}, current_index: {current_index}, total_records: {total_records}") + + if remaining <= 0 and current_index >= total_records - 1: + print("[DEBUG] Setting status to 'all records processed'") + processed_person["processing_status"] = "all records processed" + else: + print(f"[DEBUG] More records to process. Remaining: {remaining}") + processed_person["processing_status"] = f"more records to process ({remaining} remaining)" + + print("[DEBUG] Final processed person:", processed_person) + return processed_person + + except Exception as e: + print(f"[DEBUG] Error processing data: {str(e)}") + return {"error": str(e), "processing_status": "error occurred"} + +# Create agents +data_agent = Agent( + name="DataCollector", + role="Data collection specialist", + goal="Collect and validate data about individuals", + backstory="Expert in gathering and validating demographic data", + tools=[random_data_of_individuals], + self_reflect=False +) + +process_agent = Agent( + name="DataProcessor", + role="Data processor", + goal="Process and categorize individual data", + backstory="Expert in data analysis and categorization", + tools=[process_data_of_individuals], + self_reflect=False +) + +# Modify tasks to use Pydantic models +collect_task = Task( + description="Collect random individual data using the random_data_of_individuals tool. Return as a JSON object with 'items' array.", + expected_output="List of individual records with basic information", + agent=data_agent, + name="collect_data", + tools=[random_data_of_individuals], + is_start=True, + next_tasks=["validate_data"], + output_json=DataList +) + +validate_task = Task( + description="""Validate the collected data. Check if: + 1. All required fields are present (name, age, job, city, salary) + 2. Age is between 25 and 65 + 3. Salary is between 30000 and 120000 + Return validation_result as 'valid' or 'invalid' with optional details.""", + expected_output="Validation result indicating if data is valid or invalid", + agent=data_agent, + name="validate_data", + task_type="decision", + condition={ + "valid": ["process_data"], + "invalid": ["collect_data"] + }, + output_json=ValidationResult +) + +process_task = Task( + description="""Process one record at a time from the input data. + Current progress will be shown in Loop Status. + + For the current record: + 1. Use process_data_of_individuals tool to add categories + 2. Return the processed record with remaining count + + Current remaining: {remaining} + Current item: {current_item} + + Process this record and indicate if more records remain.""", + expected_output="Processed record with categories and status", + agent=process_agent, + name="process_data", + tools=[process_data_of_individuals], + task_type="loop", + condition={ + "more records to process": ["process_data"], + "all records processed": [] + }, + context=[collect_task], + output_json=ProcessedPerson +) + +# Create PraisonAIAgents instance with workflow process +workflow = PraisonAIAgents( + agents=[data_agent, process_agent], + tasks=[collect_task, validate_task, process_task], + verbose=1, + process="workflow" +) + +# Run the workflow +result = workflow.start() + +# Print results +print("\nWorkflow Results:") +print("----------------") +for task_id, task in workflow.tasks.items(): + print(f"\nTask: {task.name}") + print(f"Status: {task.status}") + if task.result: + print("Output:") + try: + # Try to format as pretty JSON + import json + output = json.loads(task.result.raw) + print(json.dumps(output, indent=2)) + except: + # If not JSON, print raw output + print(task.result.raw[:500] + "..." if len(task.result.raw) > 500 else task.result.raw) \ No newline at end of file diff --git a/docs/features/agenticrouting.mdx b/docs/features/agenticrouting.mdx new file mode 100644 index 00000000..ad46042e --- /dev/null +++ b/docs/features/agenticrouting.mdx @@ -0,0 +1,224 @@ +--- +title: "Agentic Routing" +description: "Learn how to create AI agents with dynamic routing capabilities for workflow management." +icon: "route" +--- + +## Quick Start + + + + First, install the PraisonAI Agents package: + ```bash + pip install praisonaiagents + ``` + + + + Set your OpenAI API key as an environment variable in your terminal: + ```bash + export OPENAI_API_KEY=your_api_key_here + ``` + + + + Create a new file `app.py` with the basic setup: + ```python + from praisonaiagents.agent import Agent + from praisonaiagents.task import Task + from praisonaiagents.agents import PraisonAIAgents + import time + + def get_time_check(): + current_time = int(time.time()) + result = "even" if current_time % 2 == 0 else "odd" + print(f"Time check: {current_time} is {result}") + return result + + # Create specialized agents + router = Agent( + name="Router", + role="Input Router", + goal="Evaluate input and determine routing path", + instructions="Analyze input and decide whether to proceed or exit", + tools=[get_time_check] + ) + + processor1 = Agent( + name="Processor 1", + role="Secondary Processor", + goal="Process valid inputs that passed initial check", + instructions="Process data that passed the routing check" + ) + + processor2 = Agent( + name="Processor 2", + role="Final Processor", + goal="Perform final processing on validated data", + instructions="Generate final output for processed data" + ) + + # Create tasks with routing logic + routing_task = Task( + name="initial_routing", + description="check the time and return according to what is returned", + expected_output="pass or fail based on what is returned", + agent=router, + is_start=True, + task_type="decision", + condition={ + "pass": ["process_valid"], + "fail": ["process_invalid"] + } + ) + + processing_task = Task( + name="process_valid", + description="Process validated input", + expected_output="Processed data ready for final step", + agent=processor1, + ) + + final_task = Task( + name="process_invalid", + description="Generate final output", + expected_output="Final processed result", + agent=processor2 + ) + + # Create and run workflow + workflow = PraisonAIAgents( + agents=[router, processor1, processor2], + tasks=[routing_task, processing_task, final_task], + process="workflow", + verbose=True + ) + + print("\nStarting Routing Workflow...") + print("=" * 50) + + results = workflow.start() + + print("\nWorkflow Results:") + print("=" * 50) + for task_id, result in results["task_results"].items(): + if result: + task_name = result.description + print(f"\nTask: {task_name}") + print(f"Result: {result.raw}") + print("-" * 50) + ``` + + + + Type this in your terminal to run your agents: + ```bash + python app.py + ``` + + + + + **Requirements** + - Python 3.10 or higher + - OpenAI API key. Generate OpenAI API key [here](https://platform.openai.com/api-keys). Use Other models using [this guide](/models). + - Basic understanding of Python + + +
+ +
+ +## Understanding Agentic Routing + + + Agentic routing enables: + - Dynamic decision-making in workflows + - Conditional task execution paths + - Automated process branching + - Intelligent workflow management + + +## Features + + + + Route tasks based on real-time decisions and conditions. + + + Implement complex branching logic in workflows. + + + Handle task dependencies and execution order. + + + Control workflow execution with detailed monitoring. + + + +## Configuration Options + +```python +# Create a router agent +router = Agent( + name="Router", + role="Input Router", + goal="Evaluate input and determine routing path", + instructions="Analyze input and decide whether to proceed or exit", + tools=[get_time_check], # Custom tools for routing decisions + verbose=True # Enable detailed logging +) + +# Task with routing configuration +routing_task = Task( + name="initial_routing", + description="Route based on conditions", + expected_output="Routing decision", + agent=router, + is_start=True, + task_type="decision", + condition={ + "pass": ["next_task"], + "fail": ["alternate_task"] + } +) +``` + +## Troubleshooting + + + + If routing doesn't work as expected: + - Verify condition mappings + - Check task dependencies + - Enable verbose mode for debugging + + + + If workflow is unclear: + - Review task connections + - Verify agent configurations + - Check routing conditions + + + +## Next Steps + + + + Learn about automatically created and managed AI agents + + + Explore lightweight, focused AI agents + + + + + For optimal results, ensure your routing conditions are well-defined and your task dependencies are properly configured. + diff --git a/docs/mint.json b/docs/mint.json index 240a27bb..6795507c 100644 --- a/docs/mint.json +++ b/docs/mint.json @@ -90,7 +90,8 @@ "features/codeagent", "features/mathagent", "features/structured", - "features/callbacks" + "features/callbacks", + "features/agenticrouting" ] }, {