-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathrainbow_x_px250.py
239 lines (220 loc) · 9.02 KB
/
rainbow_x_px250.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import sdf
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
import numpy as np
from numpy import ma
from matplotlib import colors, ticker, cm
from matplotlib.mlab import bivariate_normal
from optparse import OptionParser
import os
#%matplotlib inline
#from colour import Color
######## Constant defined here ########
pi = 3.1415926535897932384626
q0 = 1.602176565e-19 # C
m0 = 9.10938291e-31 # kg
v0 = 2.99792458e8 # m/s^2
kb = 1.3806488e-23 # J/K
mu0 = 4.0e-7*pi # N/A^2
epsilon0 = 8.8541878176203899e-12 # F/m
h_planck = 6.62606957e-34 # J s
wavelength= 1.0e-6
frequency = v0*2*pi/wavelength
exunit = m0*v0*frequency/q0
bxunit = m0*frequency/q0
denunit = frequency**2*epsilon0*m0/q0**2
#from colour import Color
print 'electric field unit: '+str(exunit)
print 'magnetic field unit: '+str(bxunit)
print 'density unit nc: '+str(denunit)
font = {'family' : 'monospace',
'color' : 'black',
'weight' : 'normal',
'size' : 20,
}
######### Parameter you should set ###########
start = 1 # start time
stop = 400 # end time
step = 1 # the interval or step
Data = 'Data0/'
name = 'electron scattering plot'
amplitude = '250'
######### Script code drawing figure ################
data0 = sdf.read("./Dataa"+amplitude+"no/0000.sdf",dict=True)
#data1 = sdf.read("./Dataa350rr/"+str(n).zfill(4)+".sdf",dict=True)
header=data0['Header']
time=header['time']
x0 = data0['Grid/Particles/electron'].data[0]/1.0e-6
y0 = data0['Grid/Particles/electron'].data[1]/1.0e-6
id0 = data0['Particles/ID/electron'].data
pos0= np.zeros(5000)
print(np.max(id0-1),np.min(id0-1),x0[id0-1])
for i in range(5000):
pos0[id0[i]-1]=y0[i]
data0 = sdf.read("./Dataa"+amplitude+"rr/0000.sdf",dict=True)
#data1 = sdf.read("./Dataa350rr/"+str(n).zfill(4)+".sdf",dict=True)
header=data0['Header']
time=header['time']
x0 = data0['Grid/Particles/electron'].data[0]/1.0e-6
y0 = data0['Grid/Particles/electron'].data[1]/1.0e-6
id0 = data0['Particles/ID/electron'].data
pos1= np.zeros(5000)
print(np.max(id0-1),np.min(id0-1),x0[id0-1])
for i in range(5000):
pos1[id0[i]-1]=y0[i]
data0 = sdf.read("./Dataa"+amplitude+"qe/0000.sdf",dict=True)
#data1 = sdf.read("./Dataa350rr/"+str(n).zfill(4)+".sdf",dict=True)
header=data0['Header']
time=header['time']
x0 = data0['Grid/Particles/electron'].data[0]/1.0e-6
y0 = data0['Grid/Particles/electron'].data[1]/1.0e-6
id0 = data0['Particles/ID/electron'].data
pos2= np.zeros(5000)
print(np.max(id0-1),np.min(id0-1),x0[id0-1])
for i in range(5000):
pos2[id0[i]-1]=y0[i]
def main(from_path, to_path):
for n in range(start,stop+step,step):
if n < 40:
x_min,x_max=45,55
y_min,y_max=500,1100
elif n < 50:
x_min,x_max=45,55
y_min,y_max=0,1100
elif n < 70:
x_min,x_max=45,55
y_min,y_max=-600,1100
elif n < 90:
x_min,x_max=40,60
y_min,y_max=-1000,1100
elif n < 125:
x_min,x_max=40,60
y_min,y_max=-1000,1100
elif n < 180:
x_min,x_max=35,65
y_min,y_max=-1000,1100
elif n < 235:
x_min,x_max=30,70
y_min,y_max=-400,400
elif n < 290:
x_min,x_max=25,75
y_min,y_max=-400,400
else:
x_min,x_max=25-(n*1.0-290.0)*0.1,75+(n*1.0-290.0)*0.1
y_min,y_max=-300,300
#plt.xlim(x_min,x_max)
#plt.ylim(y_min,y_max)
datalaser = sdf.read("./Datalaser/"+str(n).zfill(4)+".sdf",dict=True)
laser_x = datalaser['Grid/Grid_mid'].data[0]/1.0e-6
laser_y = datalaser['Grid/Grid_mid'].data[1]/1.0e-6
X,Y = np.meshgrid(laser_x,laser_y)
ex = datalaser['Electric Field/Ey'].data/exunit/250.0
if np.min(ex.T) == np.max(ex.T):
continue
eee=np.max([-np.min(ex.T),np.max(ex.T)])
levels = np.linspace(-eee, eee, 24)
#### header data ####
plt.subplots_adjust(left=0.05,right=0.9,bottom=0.1,top=0.95,wspace=0.15,hspace=0.2)
plt.subplot(1,3,1)
data0 = sdf.read("./Dataa"+amplitude+"no/"+str(n).zfill(4)+".sdf",dict=True)
#data1 = sdf.read("./Dataa350rr/"+str(n).zfill(4)+".sdf",dict=True)
header=data0['Header']
time=header['time']
x0 = data0['Grid/Particles/electron'].data[0]/1.0e-6
y0 = data0['Grid/Particles/electron'].data[1]/1.0e-6
px0 = data0['Particles/Px/electron'].data/(m0*v0)
id0 = data0['Particles/ID/electron'].data
# x = data0['Grid/Grid_mid'].data[0]/1.0e-6
# y = data0['Grid/Grid_mid'].data[1]/1.0e-6
# X,Y = np.meshgrid(x,y)
# ex = data0['Electric Field/Ey'].data/exunit
# if np.min(ex.T) == np.max(ex.T):
# continue
# eee=np.max([-np.min(ex.T),np.max(ex.T)])
# levels = np.linspace(-eee, eee, 24)
# plt.contourf(X, Y, ex.T, levels=levels, cmap=cm.RdGy)
plt.scatter(x0,px0,s=20,c=abs(pos0[id0-1]),cmap=cm.rainbow,label='No RR',edgecolors='None')
plt.legend(loc='upper right',framealpha=1.0,markerscale=2,fontsize=20.0)
plt.xlim(40,90)
plt.ylim(-50,1100)
#plt.text(x_min+0.1*(x_max-x_min),y_max-0.1*(y_max-y_min),r'$\xi_0$='+amplitude+' No RR',fontsize=25)
plt.xlabel('X [$\mu m$]',fontdict=font)
plt.ylabel('Px [$m_ec$]',fontdict=font)
plt.xticks(fontsize=20); plt.yticks(fontsize=12);
plt.title(name+' at '+str(round(time/3.333e-15,2))+' $T_0$',fontdict=font)
plt.subplot(1,3,2)
data0 = sdf.read("./Dataa"+amplitude+"rr/"+str(n).zfill(4)+".sdf",dict=True)
# data1 = sdf.read("./epoch2drr/Data1/"+str(n).zfill(4)+".sdf",dict=True)
# data2 = sdf.read("./epoch2dqe/Data1/"+str(n).zfill(4)+".sdf",dict=True)
header=data0['Header']
time=header['time']
x0 = data0['Grid/Particles/electron'].data[0]/1.0e-6
y0 = data0['Grid/Particles/electron'].data[1]/1.0e-6
px0 = data0['Particles/Px/electron'].data/(m0*v0)
id0 = data0['Particles/ID/electron'].data
# plt.scatter(x1,y1,s=8,c=(0,192.0/255.0,0),label='LL RR',edgecolors='None')
#plt.contourf(X, Y, ex.T, levels=levels, cmap=cm.bwr)
plt.scatter(x0,px0,s=20,c=abs(pos1[id0-1]),cmap=cm.rainbow,label='LL RR',edgecolors='None')
plt.legend(loc='upper right',framealpha=1.0,markerscale=2,fontsize=20.0)
plt.xlim(40,90)
plt.ylim(-50,1100)
#plt.text(x_min+0.1*(x_max-x_min),y_max-0.1*(y_max-y_min),r'$\xi_0$='+amplitude+' LL RR',fontsize=25)
#plt.text(5,45,r'$\xi_0=350$',fontsize=20)
plt.xlabel('X [$\mu m$]',fontdict=font)
plt.ylabel('Px [$m_ec$]',fontdict=font)
plt.xticks(fontsize=20); plt.yticks(fontsize=12);
plt.title(name+' at '+str(round(time/3.333e-15,2))+' $T_0$',fontdict=font)
plt.subplot(1,3,3)
data0 = sdf.read("./Dataa"+amplitude+"qe/"+str(n).zfill(4)+".sdf",dict=True)
header=data0['Header']
time=header['time']
x0 = data0['Grid/Particles/electron'].data[0]/1.0e-6
y0 = data0['Grid/Particles/electron'].data[1]/1.0e-6
px0 = data0['Particles/Px/electron'].data/(m0*v0)
id0 = data0['Particles/ID/electron'].data
# plt.scatter(x1,y1,s=8,c=(0,192.0/255.0,0),label='LL RR',edgecolors='None')
#plt.contourf(X, Y, ex.T, levels=levels, cmap=cm.bwr)
plt.scatter(x0,px0,s=20,c=abs(pos2[id0-1]),cmap=cm.rainbow,label='QED RR',edgecolors='None')
plt.legend(loc='upper right',framealpha=1.0,markerscale=2,fontsize=20.0)
#plt.text(x_min+0.1*(x_max-x_min),y_max-0.1*(y_max-y_min),r'$\xi_0$='+amplitude+' QED RR',fontsize=25)
plt.xlim(40,90)
plt.ylim(-50,1100)
#plt.text(5,45,r'$\xi_0=350$',fontsize=20)
plt.xlabel('X [$\mu m$]',fontdict=font)
plt.ylabel('Px [$m_ec$]',fontdict=font)
plt.xticks(fontsize=20); plt.yticks(fontsize=12);
plt.title(name+' at '+str(round(time/3.333e-15,2))+' $T_0$',fontdict=font)
#plt.subplots_adjust(left=0.05,right=0.85,bottom=0.1,top=0.95,wspace=0.15,hspace=0.2)
cbar=plt.colorbar(ticks=[0.5, 1.0, 1.5, 2.0],cax=plt.axes([0.94,0.1,0.01,0.85]))
cbar.set_label('Initial transverse position $y_0$',fontdict=font)
fig = plt.gcf()
fig.set_size_inches(33, 9)
fig.savefig('./jpg_x_px250/gif'+str(n).zfill(4)+'.png',format='png',dpi=45)
plt.close("all")
fig.show()
print 'finised '+str(round(100.0*(n-start+step)/(stop-start+step),4))+'%'
if __name__ == "__main__":
parser = OptionParser()
parser.add_option("-f","--from_path",
dest = "from_path",
type = "string",
default = "Data")
parser.add_option("-t","--to_path",
dest = "to_path",
type = "string",
default = "jpg")
(option,args) = parser.parse_args()
if option.from_path[-1:] != '/' :
option.from_path += '/'
option.to_path = option.to_path
if option.to_path[-1:] != '/' :
option.to_path += '/'
if not os.path.exists(option.from_path):
print 'error: input data path not exist'
# exit()
print "from path:", option.from_path
print "to path:", option.to_path
#if not os.path.exists(option.to_path):
# os.mkdir(option.to_path)
main(option.from_path,option.to_path)