-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn.py
79 lines (55 loc) · 2.48 KB
/
cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
# Initialising the CNN
classifier = Sequential()
# Step 1 - Convolution
classifier.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation = 'relu'))
# Step 2 - Pooling
classifier.add(MaxPooling2D(pool_size = (2, 2)))
# Adding a second convolutional layer
# Step 3 - Flattening
classifier.add(Flatten())
# Step 4 - Full connection
classifier.add(Dense(units = 128, activation = 'relu'))
classifier.add(Dense(units = 1, activation = 'sigmoid'))
# Compiling the CNN
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
# Part 2 - Fitting the CNN to the images
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale = 1./255,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True)
test_datagen = ImageDataGenerator(rescale = 1./255)
training_set = train_datagen.flow_from_directory('/Users/sudhanshukumar/Downloads/PetImages-20190330T113641Z-001/PetImages',
target_size = (64, 64),
batch_size = 32,
class_mode = 'binary')
test_set = test_datagen.flow_from_directory('/Users/sudhanshukumar/Downloads/PetImages-20190330T113641Z-001/PetImages',
target_size = (64, 64),
batch_size = 32,
class_mode = 'binary')
model = classifier.fit_generator(training_set,
steps_per_epoch = 8000,
epochs = 1,
validation_data = test_set,
validation_steps = 2000)
classifier.save("model.h5")
print("Saved model to disk")
# Part 3 - Making new predictions
import numpy as np
from keras.preprocessing import image
test_image = image.load_img('/Users/sudhanshukumar/Downloads/cat.11.jpg', target_size = (64, 64))
test_image = image.img_to_array(test_image)
test_image = np.expand_dims(test_image, axis = 0)
result = model.predict(test_image)
training_set.class_indices
if result[0][0] == 1:
prediction = 'dog'
print(prediction)
else:
prediction = 'cat'
print(prediction)