-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmakefile
49 lines (40 loc) · 1.31 KB
/
makefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
setup:
python3 -m venv .venv
source .venv/bin/activate
install:
git pull
pip3 install -r requirements.txt
pip3 install .
install-dev:
git pull
pip3 install -r requirements.txt
pip3 install -r requirements-dev.txt
pip3 install -e .
pre-commit install
train:
drcomp -m evaluate=False dataset=$(dataset) reducer=AE,CAE,kPCA,LLE,ConvAE,PCA wandb.project=drcomp wandb.group=dataset wandb.name=reducer
evaluate:
drcomp -m evaluate=True max_evaluation_samples=15000 dataset=$(dataset) reducer=AE,CAE,kPCA,LLE,ConvAE,PCA use_pretrained=True wandb.project=drcomp wandb.group=dataset wandb.name=reducer
train-all:
make train dataset=MNIST && \
make train dataset=LfwPeople && \
make train dataset=SwissRoll && \
make train dataset=TwinPeaks && \
make train dataset=FER2013 && \
make train dataset=OlivettiFaces && \
make train dataset=ICMR && \
make train dataset=FashionMNIST
evaluate-all:
make evaluate dataset=MNIST && \
make evaluate dataset=LfwPeople && \
make evaluate dataset=SwissRoll && \
make evaluate dataset=TwinPeaks && \
make evaluate dataset=FER2013 && \
make evaluate dataset=OlivettiFaces && \
make evaluate dataset=ICMR && \
make evaluate dataset=FashionMNIST
zip-results:
zip -r models.zip models && \
zip -r metrics.zip metrics
zip-model-for:
zip -r $(dataset)-models.zip models/$(dataset)