forked from erhanbas/navigator
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcarver.py
555 lines (482 loc) · 26.7 KB
/
carver.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
# -*- coding: utf-8 -*-
"""Command line interface for navigator."""
import util
import numpy as np
import os
import sys
import getopt
import h5py
import improc
import pickle
from functools import partial
import z5py
import tqdm
from dask_jobqueue import LSFCluster
from dask.distributed import Client, LocalCluster
from dask.distributed import wait
from dask.distributed import progress
import getpass
import time
def dump_single_tile_id(tile_id,
leaf_ids_within_tile,
rendered_folder_path,
tile_shape,
leaf_shape,
chunk_shape_with_color_as_tuple,
dtype,
dataset,
is_dataset_transposed):
tilename = '/'.join(a for a in tile_id)
tilepath = os.path.join(rendered_folder_path, tilename)
tile_octree_path = np.array(list(tile_id), dtype=int)
tile_ijk_in_tile_grid = np.ndarray.flatten(improc.oct2grid(tile_octree_path.reshape(1, len(tile_octree_path))))
tile_origin_ijk = tile_ijk_in_tile_grid * tile_shape
tile_end_ijk = tile_origin_ijk + tile_shape
if os.path.isdir(tilepath):
tile_ijk_in_tile_grid_as_tuple = tuple(tile_ijk_in_tile_grid)
tile_ijk_in_tile_grid_as_tuple_with_color = tile_ijk_in_tile_grid_as_tuple + (0,) # dataset includes color channels
if is_dataset_transposed:
tile_ijk_in_tile_grid_as_tuple_with_color_maybe_flipped = tuple(reversed(tile_ijk_in_tile_grid_as_tuple_with_color))
else:
tile_ijk_in_tile_grid_as_tuple_with_color_maybe_flipped = tile_ijk_in_tile_grid_as_tuple_with_color
does_chunk_exist = dataset.chunk_exists(tile_ijk_in_tile_grid_as_tuple_with_color_maybe_flipped)
if not does_chunk_exist:
im = improc.loadTiles(tilepath)
# relativeDepth = leaf_level_count - tile_level_count
output_tile_stack = np.zeros(chunk_shape_with_color_as_tuple, dtype=dtype)
# patches in idTiled
for leaf_octree_path_within_tile_as_string in leaf_ids_within_tile:
leaf_octree_path_within_tile = np.array(list(leaf_octree_path_within_tile_as_string), dtype=int)
leaf_ijk_in_leaf_grid_within_tile = improc.oct2grid(leaf_octree_path_within_tile.reshape(1, len(leaf_octree_path_within_tile))) # in 0 base
start = np.ndarray.flatten(leaf_ijk_in_leaf_grid_within_tile * leaf_shape)
end = np.ndarray.flatten(start + leaf_shape)
leaf_stack = im[start[0]:end[0], start[1]:end[1], start[2]:end[2], :]
output_tile_stack[start[0]:end[0], start[1]:end[1], start[2]:end[2], :] = leaf_stack
if is_dataset_transposed :
dataset[:, tile_origin_ijk[2]:tile_end_ijk[2], tile_origin_ijk[1]:tile_end_ijk[1], tile_origin_ijk[0]:tile_end_ijk[0]] = \
np.transpose(output_tile_stack)
else:
dataset[tile_origin_ijk[0]:tile_end_ijk[0], tile_origin_ijk[1]:tile_end_ijk[1], tile_origin_ijk[2]:tile_end_ijk[2], :] = \
output_tile_stack
# end def
def dump_single_tile_id_to_txt(tile_id,
leaf_ids_within_tile,
rendered_folder_path,
tile_shape,
leaf_shape,
fo):
tilename = '/'.join(a for a in tile_id)
tilepath = os.path.join(rendered_folder_path, tilename)
tile_octree_path = np.array(list(tile_id), dtype=int)
tile_ijk_in_tile_grid = np.ndarray.flatten(improc.oct2grid(tile_octree_path.reshape(1, len(tile_octree_path))))
tile_origin_ijk = tile_ijk_in_tile_grid * tile_shape
#tile_end_ijk = tile_origin_ijk + tile_shape
if os.path.isdir(tilepath):
#tile_ijk_in_tile_grid_as_tuple = tuple(tile_ijk_in_tile_grid)
#tile_ijk_in_tile_grid_as_tuple_with_color = tile_ijk_in_tile_grid_as_tuple + (0,) # dataset includes color channels
#tile_ijk_in_tile_grid_as_tuple_with_color_maybe_flipped = tile_ijk_in_tile_grid_as_tuple_with_color
#output_tile_stack = np.zeros(chunk_shape_with_color_as_tuple, dtype=dtype)
# patches in idTiled
for leaf_octree_path_within_tile_as_string in leaf_ids_within_tile:
leaf_octree_path_within_tile = np.array(list(leaf_octree_path_within_tile_as_string), dtype=int)
leaf_ijk_in_leaf_grid_within_tile = improc.oct2grid(leaf_octree_path_within_tile.reshape(1, len(leaf_octree_path_within_tile))) # in 0 base
start = np.ndarray.flatten(leaf_ijk_in_leaf_grid_within_tile * leaf_shape)
#end = np.ndarray.flatten(start + leaf_shape)
#leaf_stack = im[start[0]:end[0], start[1]:end[1], start[2]:end[2], :]
#output_tile_stack[start[0]:end[0], start[1]:end[1], start[2]:end[2], :] = leaf_stack
absolute_offset_ijk = tile_origin_ijk + start
fo.write("%d %d %d %d %d %d\n" % (absolute_offset_ijk[0], absolute_offset_ijk[1], absolute_offset_ijk[2], leaf_shape[0], leaf_shape[1], leaf_shape[2]) )
# end def
def dump_write(render_folder_name,
full_volume_shape,
dtype,
color_channel_count,
output_file_name,
tile_hash,
leaf_level_count,
tile_level_count,
compression_method,
compression_options,
output_file_type,
do_use_simple_for_loop=False):
# dumps volumetric data into h5/n5/zarr
#self.inputLoc = inputloc
tile_shape = (full_volume_shape / (2**tile_level_count)).astype(int)
leaf_shape = (full_volume_shape / (2**leaf_level_count)).astype(int)
# check if dataset name is provided
splitted_name = output_file_name.split(':')
if len(splitted_name) == 1:
output_file_name = splitted_name[0]
dataset_name = "volume"
elif len(splitted_name) ==2:
output_file_name = splitted_name[0]
dataset_name = splitted_name[1]
else:
raise ValueError('output file name has more than one ":"', output_file_name)
#self.setting = setting
#self.tilelist = tilelist
tile_id_list = list(tile_hash.keys())
leaf_ids_per_tile_list = list(tile_hash.values())
# # Unpack the settings
# volSize = tuple(map(int,setting['volSize']))
# tileSize = setting['tileSize']
# #volReference = setting['volReference']
# depthFull = setting['depthFull']
# depthBase = setting['depthBase']
# leafSize = setting['leaf_shape']
# dtype = setting['dtype']
# chunkSize = tuple(map(int,setting['chunkSize']))
# compression_method = setting['compression']
# comp_opts = setting['compression_opts']
chunk_shape = tile_shape
full_volume_shape_including_color_channel = np.append(full_volume_shape, color_channel_count) # append color channel
chunk_shape_including_color_channel = np.append(chunk_shape, color_channel_count)
full_volume_shape_with_color_channels_as_tuple = tuple(map(int, full_volume_shape_including_color_channel))
chunk_shape_with_color_as_tuple = tuple(map(int, chunk_shape_including_color_channel))
if output_file_type=='h5':
# write into h5
with h5py.File(output_file_name, "w") as f:
dataset = f.create_dataset(dataset_name,
full_volume_shape_with_color_channels_as_tuple,
dtype=dtype,
chunks=chunk_shape_with_color_as_tuple,
compression=compression_method,
compression_opts=compression_options)
# crop chuncks from a tile read in tilelist
for iter, tile_id in enumerate(tile_id_list):
print('{} : {} out of {}'.format(tile_id, iter+1, len(tile_id_list)))
leaf_id_within_tile = tile_hash[tile_id]
dump_single_tile_id(tile_id,
leaf_id_within_tile,
render_folder_name,
tile_shape,
leaf_shape,
chunk_shape_with_color_as_tuple,
dtype,
dataset,
is_dataset_transposed=False)
elif output_file_type == 'txt':
# write into h5
with open(output_file_name, "wt") as fo:
for iter, tile_id in enumerate(tile_id_list):
print('{} : {} out of {}'.format(tile_id, iter + 1, len(tile_id_list)))
leaf_id_within_tile = tile_hash[tile_id]
dump_single_tile_id_to_txt(tile_id,
leaf_id_within_tile,
render_folder_name,
tile_shape,
leaf_shape,
fo)
elif output_file_type=='n5' or output_file_type=='zarr':
# write into z5 or n5
if do_use_simple_for_loop:
use_zarr_format = (output_file_type == 'zarr')
with z5py.File(output_file_name, 'a', use_zarr_format=use_zarr_format) as f:
# require_dataset seems to choke on the compression_options {level: 9}, so this is a workaround
g = f.require_group('/')
try:
dataset = g[dataset_name]
except KeyError:
dataset = f.create_dataset(dataset_name,
shape=tuple(reversed(full_volume_shape_with_color_channels_as_tuple)),
dtype=dtype,
chunks=tuple(reversed(chunk_shape_with_color_as_tuple)),
compression=compression_method,
**compression_options)
for tile_id in tqdm.tqdm(tile_id_list):
leaf_ids_within_tile = tile_hash[tile_id]
dump_single_tile_id(tile_id,
leaf_ids_within_tile,
render_folder_name,
tile_shape,
leaf_shape,
chunk_shape_with_color_as_tuple,
dtype,
dataset,
is_dataset_transposed=True)
else:
username = getpass.getuser()
scratch_folder_path = '/scratch/%s' % username
with LSFCluster(cores=2, memory='30 GB', local_dir=scratch_folder_path, projectstr='mouselight', queue='normal', extralist='-o /dev/null -e /dev/null') as cluster:
cluster.adapt(minimum=1, maximum=1000)
#cluster = LocalCluster(n_workers=4, threads_per_worker=1)
#cluster.scale(200)
with Client(cluster) as client:
use_zarr_format = (output_file_type=='zarr')
with z5py.File(output_file_name, 'a', use_zarr_format=use_zarr_format) as f:
# require_dataset seems to choke on the compression_options {level: 9}, so this is a workaround
g = f.require_group('/')
try:
dataset = g[dataset_name]
except KeyError:
dataset = f.create_dataset(dataset_name,
shape=tuple(reversed(full_volume_shape_with_color_channels_as_tuple)),
dtype=dtype,
chunks=tuple(reversed(chunk_shape_with_color_as_tuple)),
compression=compression_method,
**compression_options)
two_arg_dump_single_tile_id = \
partial(dump_single_tile_id,
rendered_folder_path=render_folder_name,
tile_shape=tile_shape,
leaf_shape=leaf_shape,
chunk_shape_with_color_as_tuple=chunk_shape_with_color_as_tuple,
dtype=dtype,
dataset=dataset,
is_dataset_transposed=True)
#with Pool(16) as pool :
# foo = list(tqdm.tqdm(pool.imap(f, tile_id_list), total=len(tile_id_list)))
# for tile_id in tqdm.tqdm(tile_id_list):
# leaf_id_within_tile = tile_hash[tile_id]
# f(tile_id, leaf_id_within_tile)
print('About to process %d tiles' % len(tile_id_list))
futures = client.map(two_arg_dump_single_tile_id, tile_id_list, leaf_ids_per_tile_list, retries=2)
progress(futures, notebook=False) # need notebook=False when running in Spyder
wait(futures) # just to make sure...
print('')
print('All Dask jobs have exited')
print('')
print('futures:')
print(futures)
#for tile_id in tile_id_list:
# leaf_id_within_tile = tile_hash[tile_id]
# this_future = client.submit(f, tile_id, leaf_id_within_tile)
# fire_and_forget(this_future)
# end
# def sample_spherical(npoints, ndim=3):
# vec = np.random.randn(ndim, npoints)
# vec /= np.linalg.norm(vec, axis=0)
# return vec
# def fixKinksinAnnotation():
# input_folder = '/groups/mousebrainmicro/mousebrainmicro/users/base/AnnotationData/h5repo'
# swcfiles = [os.path.join(input_folder, fold, files) for fold in os.listdir(input_folder) if
# os.path.isdir(os.path.join(input_folder, fold)) for files in
# os.listdir(os.path.join(input_folder, fold)) if
# files.endswith("-carved.swc")]
# swcfiles.sort()
# for swc_file in swcfiles[1]:
# path, filename = os.path.split(swc_file)
# output_h5_file = os.path.join(path, filename.split('.')[0] + '.h5')
# input_swc = swc_file
# # output_h5_file = os.path.join(path,filename.split('.')[0][:-1]+'.h5')
# # input_swc = os.path.join(path,filename.split('.')[0][:-1]+'.swc')
# with h5py.File(output_h5_file, "r+") as f:
# try:
# del f['reconstruction']
# except Exception:
# pass
# um, edges, R, offset, scale, header = util.readSWC(swcfile=input_swc, scale=1)
# dset_swc = f.create_dataset("reconstruction", (um.shape[0], 7), dtype='f')
# for iter, xyz_ in enumerate(um):
# xyz_ = np.ceil(xyz_ - np.sqrt(np.finfo(float).eps))
# dset_swc[iter, :] = np.array(
# [edges[iter, 0].__int__(), 1, xyz_[0], xyz_[1], xyz_[2], 1.0, edges[iter, 1].__int__()])
def crop_from_render(output_volume_file_path, render_folder_name, input_swc_file_or_folder_name, do_use_simple_for_loop=False):
output_folder_path = os.path.dirname(output_volume_file_path)
if not os.path.exists(output_folder_path):
os.makedirs(output_folder_path)
params = util.readParameterFile(parameterfile=render_folder_name + "/calculated_parameters.jl")
tile_level_count = params["nlevels"].astype(int)
tile_shape = params["leafSize"].astype(int)
origin_um = params["origin"]
spacing_um = params["spacing"]
full_volume_shape = tile_shape * 2**tile_level_count
# check if input argument is file or folder
if os.path.isfile(input_swc_file_or_folder_name):
inputfolder, swc_name_w_ext = os.path.split(input_swc_file_or_folder_name)
#xyz_um, edges, R, offset, scale, header = util.readSWC(os.path.join(inputfolder, swc_name_w_ext))
xyz_um = util.readSWC(os.path.join(inputfolder, swc_name_w_ext))
elif os.path.isdir(input_swc_file_or_folder_name):
inputfolder = input_swc_file_or_folder_name
#xyz_um = util.appendSWCfolder(inputfolder) # somewhat redundant but cleaner
xyz_um = util.collect_nodes_from_tracing_complete_folder(inputfolder) # somewhat redundant but cleaner
#xyz_um_, edges_, R_, filenames, header = util.readSWCfolder(inputfolder)
else:
raise RuntimeError('%s does not seem to be a file, nor a folder' % input_swc_file_or_folder_name)
# Convert swc coords to voxels
xyz_in_voxels = util.um2pix(xyz_um, origin_um, spacing_um)
# Each tile in the rendered image will itself be 'octreed' into a set of 'leafs'
# depthextend tells now many octree levels there will be within each tile
extra_level_count = 3
leaf_level_count = tile_level_count + extra_level_count
leaf_shape = (tile_shape / (2**extra_level_count)).astype(int)
octpath, xres = improc.ijk2oct(xyz_in_voxels, leaf_level_count, leaf_shape)
#depthFull = params_p1["nlevels"].astype(int)
#leaf_shape = params_p1["leafshape"].astype(int)
swc_base_name = os.path.basename(input_swc_file_or_folder_name)
tile_list_pickle_file_name = '%s-tile-list.pickle' % swc_base_name
tile_list_pickle_file_path = os.path.join(output_folder_path, tile_list_pickle_file_name)
try:
tile_hash = pickle.load(open(tile_list_pickle_file_path, 'rb'))
print('Loaded tile list from memo file')
did_load_tile_hash = True
except (OSError,FileNotFoundError) :
did_load_tile_hash = False
if not did_load_tile_hash :
octpath_cover = np.unique(octpath, axis=0)
#np.savetxt(os.path.join(output_folder_path, "octpath_cover.txt"), octpath_cover, fmt="%d")
#gridlist_cover = improc.oct2grid(octpath_cover)
print('About to start dilation...')
#octpath_dilated = octpath_cover.copy()
desired_carve_out_half_diagonal_as_scalar = 512 # in x,y. z will be different
desired_carve_out_half_diagonal = desired_carve_out_half_diagonal_as_scalar * np.array([1.0, 1.0, spacing_um[0]/spacing_um[2]])
#dilation_count = 8
dilation_count = np.max( np.ceil(desired_carve_out_half_diagonal.astype(float) / leaf_shape.astype(float)) ).astype(int).item()
# should be enough to get about a 512 vx cube around each swc centerpoint
# (except 4x less in z, b/c axial rez is less)
# t = time.time()
# octpath_dilated_old = improc.dilateOct(octpath_cover, dilation_count)
# elapsed = time.time() - t
# print('Elapsed time for old method: %g s' % elapsed)
t = time.time()
octpath_dilated = improc.dilate_octree_chunk_set(octpath_cover, dilation_count)
elapsed = time.time() - t
print('Elapsed time for new dilation method: %g s' % elapsed)
# if np.array_equal(octpath_dilated_old, octpath_dilated):
# print('The two methods agree on octpath dilation result! Hooray!')
# else:
# raise RuntimeError('The two methods do not agree on octpath dilation result')
print('Done with dilation!')
tile_hash = improc.chunklist(octpath_dilated, tile_level_count) #1..8
os.makedirs(output_folder_path, exist_ok=True)
pickle.dump(tile_hash, open(tile_list_pickle_file_path, 'wb'))
#np.savetxt(os.path.join(output_folder_path, "octpath_dilated.txt"), octpath_dilated, fmt="%d")
#tileids = list(tile_hash.keys())
# base on bounding box (results in cropped output volume)
# gridReference = np.min(gridlist_dilated, axis=0)
# gridSize = np.max(gridlist_dilated, axis=0) - gridReference +1
# base on initial image
#gridReference = np.array((0,0,0))
#gridSize = full_volume_shape/leaf_shape
# # 3-array, number of leaves in each dimension to make up the full volume
#volReference = gridReference*leaf_shape
#full_volume_shape_including_color_channel = np.append(full_volume_shape, 2) # append color channel
#chunk_shape_including_color_channel = np.append(leaf_shape, 2)
#chunk_shape_including_color_channel = np.append(tile_shape, 2)
# setting = dict()
# setting['volSize'] = full_volume_shape
# setting['chunkSize'] = chunksize
# setting['depthBase'] = tile_level_count
# setting['depthFull'] = leaf_level_count
# setting['tileSize'] = tile_shape
# setting['leaf_shape'] = leaf_shape
#
# setting['dtype'] = 'uint16'
output_file_extension = os.path.splitext(output_volume_file_path)[1]
if output_file_extension == '.h5' :
output_file_type = 'h5'
compression_method = "gzip"
compression_options = 9
elif output_file_extension == '.txt' :
output_file_type = 'txt'
compression_method = "" # not used
compression_options = {} # not used
elif output_file_extension == '.n5' :
output_file_type = 'n5'
compression_method = "gzip"
compression_options = {'level': 9}
elif output_file_extension == '.zarr':
output_file_type = 'zarr'
compression_method = "blosc"
compression_options = {}
else :
raise RuntimeError('Don''t recognize the output file extension %s' % output_file_extension)
# Finally, write the voxel carved data to disk
color_channel_count = 2
dump_write(render_folder_name,
full_volume_shape,
'uint16',
color_channel_count,
output_volume_file_path,
tile_hash,
leaf_level_count,
tile_level_count,
compression_method,
compression_options,
output_file_type,
do_use_simple_for_loop)
# end def crop_from_render()
def main(argv):
""" creates cropped volume and JW structure (for visualization) based on input render folder and swc file
USAGE: 'carver.py -i <data_folder> -s <swc_file> -o <output_folder>'
-i <data_folder>: input data folder. Folders should follow octree format, e.g. <data_folder>/1/5/6
-s <swc_file>: input swc_file or folder. for *swc files 7 column conventional reconstruction format.
-o <output_folder>: folder to create h5 and JW files
-h <number_of_level>: [OPTIONAL] sets how many chunks around trace will be used
-j <output_octree>: [OPTIONAL] creates an octree formated folder at target location. "-j" without argument
will create target output at <output_folder>/JW location
NOTES:
oct in [1...8]
grid in [0...(2**depth-1)]
we keep mouselight data in <root>/<neuron-id>/consensus/<tag>_consensus.swc format, e.g.:
/groups/mousebrainmicro/mousebrainmicro/shared_tracing/Finished_Neurons/2018-08-01/G-002/consensus/2018-08-01_G-002_consensus.swc
it is suggested to copy all consensus files for that sample into a single folder manually or with a script than pass input folder with "-f" argument.
For example:
cd /groups/mousebrainmicro/mousebrainmicro/shared_tracing/Finished_Neurons/2018-08-01
find . -name "*consensus*.swc" -exec cp {} /groups/mousebrainmicro/home/base/CODE/MOUSELIGHT/carver/data/swc_recons/2018-08-01 \;
"""
# @@TODO: multi swc data dump
# @@TODO: fix octree dilation amount. make it user specified
# data_fold='/nrs/mouselight/SAMPLES/2018-08-01-raw-rerender'
# ## input_swc_file='/groups/mousebrainmicro/mousebrainmicro/users/base/AnnotationData/h5repo/2017-09-25_G-001_consensus/2017-09-25_G-001_consensus-proofed.swc'
# input_swc_file='/groups/mousebrainmicro/home/base/CODE/MOUSELIGHT/carver/data/swc_recons/2018-08-01'
# output_folder='/groups/mousebrainmicro/mousebrainmicro/users/base/AnnotationData/h5repo/2018-08-01'
# octree_folder = os.path.join(output_folder, 'JW')
additional_level_count = 3
try:
opts, args = getopt.getopt(argv, "i:s:o:j:f", ["data_fold=","input_swc_file=","output_folder=","octree_folder=","for"])
except getopt.GetoptError:
print('carver.py -i <data_folder> -s <swc_file> -o <output_folder> -j <OPT:octree_folder>')
sys.exit(2)
do_use_simple_for_loop = False
for opt, arg in opts:
print('opt:', opt,'arg:', arg)
if opt == '-h':
print('carver.py -i <data_folder> -s <swc_file> -o <output_folder>')
sys.exit()
elif opt in ("-i", "--data_fold"):
print(arg)
render_folder_name = arg
elif opt in ("-s", "--input_swc_file"):
input_swc_file = arg
elif opt in ("-o", "--output_folder"):
output_folder = arg
octree_folder = os.path.join(output_folder,'JW')
elif opt in ("-h", "--number_of_level"):
additional_level_count = arg
elif opt in ('-f', '--for'):
do_use_simple_for_loop = True
elif opt in ("-j", "--octree_folder"):
try:
octree_folder
except NameError:
print("Using output folder as JW folder")
if octree_folder:
octree_folder = arg
print('SWC FILE :', input_swc_file)
print('DATA FOLDER :', render_folder_name)
print('OUTPUT FOLDER :', output_folder)
print('ADDITIONAL LEVEL COUNT :', additional_level_count)
print('do_use_simple_for_loop :', do_use_simple_for_loop)
#print('OCTREEFOLDER :', octree_folder)
rootfolder, swc_file_name = os.path.split(input_swc_file)
#swc_name, _ = swc_name_w_ext.split(os.extsep)
#output_swc_name = '{}-carved.swc'.format(swc_name)
output_volume_file_name = '{}-carved.n5'.format(swc_file_name)
#JW_output_folder = os.path.join(output_folder,'JW')
# if not os.path.exists(JW_output_folder):
crop_from_render(render_folder_name, input_swc_file, output_folder, output_volume_file_name, do_use_simple_for_loop)
# # shutil.rmtree(JW_output_folder)
# if not os.path.exists(JW_output_folder):
# os.makedirs(JW_output_folder)
# os.chmod(JW_output_folder, 0o770)
#
# output_h5_file = os.path.join(output_folder, output_h5_name)
# converter = util.Convert2JW(output_h5_file, JW_output_folder, number_of_oct_level=None)
# converter.convert2JW()
# converter.mergeJW(number_of_level=converter.number_of_oct_level)
# converter.create_transform_file()
print('DONE')
# end def
if __name__ == "__main__":
main(sys.argv[1:])