forked from erhanbas/navigator
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathimproc.py
271 lines (227 loc) · 9.94 KB
/
improc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import numpy as np
import math
import re
from collections import defaultdict
import os
from skimage import io
import tqdm
def boundingbox(xyz):
# finds the bounding box of point cloud
return(np.round(np.array([np.min(xyz,axis=1),np.max(xyz,axis=1)])))
def snapLoc(I,nploc,w=1):
# finds the location of maxima in a 3x3x3 neighborhood
nplocupdated = nploc.copy()
for iter,loc in enumerate(nploc):
Icrop = I[loc[0]-w:loc[0]+w+1,
loc[1]-w:loc[1]+w+1,
loc[2]-w:loc[2]+w+1]
i, j, k = np.unravel_index(Icrop.argmax(), Icrop.shape)
nplocupdated[iter] = loc+(np.array((i,j,k))-w)
return nplocupdated
def ijk2oct(ijk, level_count, chunk_shape):
# converts ijk location to oct location
# ALT: params['nlevels'] is the number of levels in the octree, i.e. the length of the path to a leaf stack
# ALT: params['leafshape'] is the shape of the leaf stacks in the octree, in ijk/xyz order
# ALT: ijk is in voxels, and is zero-based. Values should be integral, although the type need not be, I don't think.
# ALT" ijk is n x 3
# ALT: chunk_shape is the chunk shape at the bottom level of the tree, i.e. the most zoomed-in level
# ALT: Returns two things: First is the octree path, an n x nlevels array, row i the path to the leaf stack for ijk[i]
# ALT: Second n x 3, row i giving the ijk position in the leaf stack for ijk[i]
if ijk.ndim==1:
did_promote = True
ijk = ijk[None,:] # convert vector to a single-row matrix
else:
did_promote = False
level_count = np.int(level_count)
#chunk_shape = params['leafshape']
row_count = ijk.shape[0]
octpath = np.zeros((row_count,level_count), dtype='int64')
ijk_within_chunk = np.zeros((row_count,3), dtype='int64')
for idx in range(row_count):
bits = []
ijk_this = ijk[idx]
#u = chunk_shape
for n in range(level_count-1,-1,-1):
bn = (2**n)*chunk_shape
th = ijk_this>bn
bits.append(th)
ijk_this = ijk_this - bn*th
# convert to octodigit
octpath[idx,:] = (1 + np.sum(np.array(bits)*2**np.array([0,1,2]),axis=1))[None,:]
ijk_within_chunk[idx,:] = ijk_this
if did_promote:
# demote back to vectors
octpath = np.ndarray.flatten(octpath)
ijk_within_chunk = np.ndarray.flatten(ijk_within_chunk)
return octpath, ijk_within_chunk
# def xyz2oct(xyz_in_voxels, level_count, leaf_shape):
# # converts xyz location to oct location
# # ALT: params['nlevels'] is the number of levels in the octree, i.e. the length of the path to a leaf stack
# # ALT: params['leafshape'] is the shape of the leaf stacks in the octree, in xyz order
# # ALT: xyz is in voxels, and is zero-based
# # ALT" xyz is n x 3
# # ALT: Returns two things: First is the octree path, an n x nlevels array, row i the path to the leaf stack for xyz[i]
# # ALT: Second n x 3, row i giving the xyz position in the leaf stack for xyz[i]
#
# # If xyz_in_voxels is a vector, convert to a one-row matrix
# if len(xyz_in_voxels.shape)==1:
# xyz_in_voxels= xyz_in_voxels[None, :]
#
# level_count = np.int(level_count)
# row_count = xyz_in_voxels.shape[0]
# octpath = np.zeros((row_count, level_count))
# xres = np.zeros((row_count, 3))
# for row_index in range(row_count):
# bits = []
# x = xyz_in_voxels[row_index]
# u = leaf_shape
# for n in range(level_count - 1, -1, -1):
# bn = (2**n)*u
# th = x>bn
# bits.append(th)
# x = x - bn*th
# # convert to octodigit
# octpath[row_index,:] = (1+ np.sum(np.array(bits)*2**np.array([0,1,2]),axis=1))[None,:]
# xres[row_index,:] = x
#
# return octpath.astype(int),xres
def to_base_3(n):
s = ""
while n:
print(n)
s = str(n % 3) + s
n = round(n/3)
return s
def to_base_2(n,numdigit=0):
n = math.floor(n)
s = ""
while n:
s = str(n % 2) + s
n = math.floor(n/2)
s=(numdigit-len(s))*'0'+s
return s
def oct2grid_list(octpath):
depth = octpath.shape[1]
numpath = octpath.shape[0]
alltiles = []
for ijk in octpath:
xyz = oct2grid(ijk.reshape(1,depth))
# for every path, there are 26 neighbors
alltiles.append(xyz[None,:])
if len(alltiles) == 1:
alltiles = np.squeeze(alltiles[0])
else:
alltiles = np.squeeze(np.concatenate(alltiles, axis=1))
return alltiles
def oct2grid(oct_idx):
# (inverse logic as grid2oct)
# oct_idx [1..8]
# grid [0 dims]
if np.any(oct_idx < 1) or np.any(oct_idx > 8):
raise Exception('oct out of bound, oct \in [1...8]')
if oct_idx.ndim == 1:
oct_idx = oct_idx.reshape(1,len(oct_idx))
numlist = oct_idx.shape[0]
depth = oct_idx.shape[1]
binarray = 2 ** (np.array(range(depth, 0, -1)) - 1)
gridarray = np.zeros((numlist,3))
for il in range(numlist):
idxarray = np.zeros((3, depth))
for id in range(depth):
base2 = to_base_2(oct_idx[il,id]-1, 3)
idxarray[2, id] = int(base2[0])
idxarray[1, id] = int(base2[1])
idxarray[0, id] = int(base2[2])
gridarray[il,:] = np.sum(idxarray * binarray, axis=1)
# broadcast binarray
return(np.asarray(gridarray,dtype=int))
def loadTiles(tilepath,ext=".tif"):
IM=[]
files = os.listdir(tilepath)
files.sort() # make sure that channels are loaded in order
for file in files:
if file.endswith(ext):
tilefiles = os.path.join(tilepath, file)
# load tile if exists
if os.path.isfile(tilefiles):
im = io.imread(tilefiles) # zyx order
IM.append(np.swapaxes(im, 0, 2))
return np.stack(IM,axis=3)
def grid2oct(ijks, level_count):
# Converts an n x 3 array of chunk coordinates (in xyz order, each row a set of coordinates) to
# an n x level_count list of octree paths, as used for mouselight octrees.
chunk_count = ijks.shape[0]
zero_based_chunk_paths = np.zeros((chunk_count, level_count), dtype=np.int)
for il in range(chunk_count):
arr = []
arr.append(to_base_2(ijks[il, 2], level_count))
arr.append(to_base_2(ijks[il, 1], level_count))
arr.append(to_base_2(ijks[il, 0], level_count))
for idx in range(level_count):
b = [el[idx] for el in arr]
zero_based_chunk_paths[il,idx]=np.int(''.join(b),2)
chunk_paths = zero_based_chunk_paths+1
return chunk_paths
def chunklist(pathlist,depth):
# -> for each tile, find bbox of crop sub-octtree
listdict = defaultdict(list)
for tileid in pathlist:
# list of crops for this tile
mykey = re.sub('[\[\]]', '', np.array_str(tileid).replace(' ',''))
listdict[mykey[:depth]].append(mykey[depth:])
return listdict
def dilateOct(octpath, width=1):
# dilates the octpath with the given search widty
# 1/2/3 with width 1 -> 1/2/3 | 2/2/3 | 1/1/3 | 1/3/3 | ... | 2/3/4
depth = octpath.shape[1]
# numpath = octpath.shape[0]
ix, iy, iz = np.mgrid[-width:width + 1, -width:width + 1, -width:width + 1]
ixyz = np.stack((ix.flatten(), iy.flatten(), iz.flatten()), axis=1)
alltiles = []
for ijk in octpath:
xyz = oct2grid(ijk.reshape(1, depth))
# for every path, there are 26 neighbors
alltiles.append(xyz[None, :] + ixyz)
if len(alltiles) == 1:
alltiles = np.squeeze(alltiles[0])
else:
alltiles = np.squeeze(np.concatenate(alltiles, axis=1))
# delete any out of bound tiles
deletethese = np.any(np.logical_or(alltiles < 0, alltiles > 2 ** depth - 1), axis=1)
alltiles = np.delete(alltiles, (np.where(deletethese)), axis=0)
# unique entries
alltiles_unique = np.unique(alltiles, axis=0)
# convert to octpaths
octlist = [grid2oct(tileid[None, :], depth) for tileid in alltiles_unique]
octlist = np.concatenate(octlist, axis=0)
return octlist
def dilate_octree_chunk_set(octree_chunk_paths, radius):
# Given a list of paths to octree chunks, determines all the octree chunks within
# radius using city-block distance, and returns a list of these chunks.
# Get dimensions
path_count = octree_chunk_paths.shape[0]
level_count = octree_chunk_paths.shape[1]
chunk_stack_size = 2 ** level_count # the stack of chunks is this x this x this
# Generate a list of offsets that constitute the neighborhood of a chunk
delta_i_grid, delta_j_grid, delta_k_grid = np.mgrid[-radius:radius + 1, -radius:radius + 1, -radius:radius + 1]
neighborhood_delta_ijks = np.stack((delta_i_grid.flatten(), delta_j_grid.flatten(), delta_k_grid.flatten()), axis=1)
# Mark all the chunks that will be included in the output list
is_chunk_marked = np.zeros((chunk_stack_size, chunk_stack_size, chunk_stack_size), dtype=bool)
for octree_chunk_path in tqdm.tqdm(octree_chunk_paths):
central_ijk = oct2grid(octree_chunk_path.reshape(1,level_count))
neighborhood_ijks = central_ijk + neighborhood_delta_ijks
#for neighborhood_ijk in neighborhood_ijks:
# i = neighborhood_ijk[0]
# j = neighborhood_ijk[1]
# k = neighborhood_ijk[2]
# if (0<=i) and (i<chunk_stack_size) and (0<=j) and (j<chunk_stack_size) and (0<=k) and (k<chunk_stack_size):
# is_chunk_marked[i,j,k] = True
is_neighborhood_chunk_in_bounds = np.all(
np.logical_and(0 <= neighborhood_ijks, neighborhood_ijks < chunk_stack_size), axis=1)
in_bounds_neighborhood_ijks = neighborhood_ijks[is_neighborhood_chunk_in_bounds]
is_chunk_marked[tuple(np.transpose(in_bounds_neighborhood_ijks))] = True
# Find all the marked chunks, convert to chunk paths, and return
ijks_in_output = np.transpose(np.nonzero(is_chunk_marked)) # marked_chunk_count x 3
result = grid2oct(ijks_in_output, level_count)
return result
# end