Sample commands to create a resnet-18 eager mode model archive, register it on TorchServe and run image prediction
Run the commands given in following steps from the parent directory of the root of the repository. For example, if you cloned the repository into /home/my_path/serve, run the steps from /home/my_path/serve
wget https://download.pytorch.org/models/resnet18-f37072fd.pth
torch-model-archiver --model-name resnet-18 --version 1.0 --model-file ./examples/image_classifier/resnet_18/model.py --serialized-file resnet18-f37072fd.pth --handler image_classifier --extra-files ./examples/image_classifier/index_to_name.json
mkdir model_store
mv resnet-18.mar model_store/
torchserve --start --model-store model_store --models resnet-18=resnet-18.mar --disable-token-auth --enable-model-api
curl http://127.0.0.1:8080/predictions/resnet-18 -T ./examples/image_classifier/kitten.jpg
This example shows how to take eager model of Resnet18
, configure TorchServe to use torch.compile
and run inference using torch.compile
.
Change directory to the examples directory
Ex: cd examples/image_classifier/resnet_18
torch.compile
supports a variety of config and the performance you get can vary based on the config. You can find the various options here.
In this example , we use the following config
echo "pt2:
compile:
enable: True
backend: inductor
mode: reduce-overhead" > model-config.yaml
Sample commands to create a Resnet18 torch.compile model archive, register it on TorchServe and run image prediction
wget https://download.pytorch.org/models/resnet18-f37072fd.pth
torch-model-archiver --model-name resnet-18 --version 1.0 --model-file model.py --serialized-file resnet18-f37072fd.pth --handler image_classifier --extra-files ../index_to_name.json --config-file model-config.yaml
mkdir model_store
mv resnet-18.mar model_store/
torchserve --start --model-store model_store --models resnet-18=resnet-18.mar --disable-token-auth --enable-model-api
curl http://127.0.0.1:8080/predictions/resnet-18 -T ../kitten.jpg
produces the output
{
"tabby": 0.40966343879699707,
"tiger_cat": 0.346704363822937,
"Egyptian_cat": 0.13002890348434448,
"lynx": 0.023919545114040375,
"bucket": 0.011532172560691833
}
- Save the Resnet18 model in as an executable script module or a traced script:
-
Save model using scripting
#scripted mode from torchvision import models import torch model = models.resnet18(pretrained=True) sm = torch.jit.script(model) sm.save("resnet-18.pt")
-
Save model using tracing
#traced mode from torchvision import models import torch model = models.resnet18(pretrained=True) model.eval() example_input = torch.rand(1, 3, 224, 224) traced_script_module = torch.jit.trace(model, example_input) traced_script_module.save("resnet-18.pt")
-
Use following commands to register Resnet18 torchscript model on TorchServe and run image prediction
torch-model-archiver --model-name resnet-18 --version 1.0 --serialized-file resnet-18.pt --extra-files ./serve/examples/image_classifier/index_to_name.json --handler image_classifier mkdir model_store mv resnet-18.mar model_store/ torchserve --start --model-store model_store --models resnet-18=resnet-18.mar --disable-token-auth --enable-model-api curl http://127.0.0.1:8080/predictions/resnet-18 -T ./serve/examples/image_classifier/kitten.jpg
If you want to test your handler code, you can use the example in debugging_backend/test_handler.py
python debugging_backend/test_handler.py --batch_size 2
results in
Torch TensorRT not enabled
DEBUG:ts.torch_handler.base_handler:Model file /home/ubuntu/serve/examples/image_classifier/resnet_18/resnet-18.pt loaded successfully
INFO:__main__:Result is [{'tabby': 0.4096629023551941, 'tiger_cat': 0.34670525789260864, 'Egyptian_cat': 0.13002872467041016, 'lynx': 0.02391958236694336, 'bucket': 0.011532173492014408}, {'tabby': 0.4096629023551941, 'tiger_cat': 0.34670525789260864, 'Egyptian_cat': 0.13002872467041016, 'lynx': 0.02391958236694336, 'bucket': 0.011532173492014408}]
If this doesn't work, you can use a debugger to find the problem in your backend handler code. Once you are confident this works, you can use your handler to deploy the model using TorchServe
Below is a screenshot of debugger running with this handler
You can also use this with pytest
pytest debugging_backend/test_handler.py
results in
================================================================================== test session starts ===================================================================================
platform linux -- Python 3.8.18, pytest-7.3.1, pluggy-1.0.0
rootdir: /home/ubuntu/serve
plugins: mock-3.10.0, anyio-3.6.1, cov-4.1.0, hypothesis-6.54.3
collected 1 item
debugging_backend/test_handler.py . [100%]
==================================================================================== warnings summary ====================================================================================
../../../../anaconda3/envs/torchserve/lib/python3.8/site-packages/ts/torch_handler/base_handler.py:13
/home/ubuntu/anaconda3/envs/torchserve/lib/python3.8/site-packages/ts/torch_handler/base_handler.py:13: DeprecationWarning: pkg_resources is deprecated as an API. See https://setuptools.pypa.io/en/latest/pkg_resources.html
from pkg_resources import packaging
../../../../anaconda3/envs/torchserve/lib/python3.8/site-packages/pkg_resources/__init__.py:2871
/home/ubuntu/anaconda3/envs/torchserve/lib/python3.8/site-packages/pkg_resources/__init__.py:2871: DeprecationWarning: Deprecated call to `pkg_resources.declare_namespace('mpl_toolkits')`.
Implementing implicit namespace packages (as specified in PEP 420) is preferred to `pkg_resources.declare_namespace`. See https://setuptools.pypa.io/en/latest/references/keywords.html#keyword-namespace-packages
declare_namespace(pkg)
../../../../anaconda3/envs/torchserve/lib/python3.8/site-packages/pkg_resources/__init__.py:2871
../../../../anaconda3/envs/torchserve/lib/python3.8/site-packages/pkg_resources/__init__.py:2871
/home/ubuntu/anaconda3/envs/torchserve/lib/python3.8/site-packages/pkg_resources/__init__.py:2871: DeprecationWarning: Deprecated call to `pkg_resources.declare_namespace('ruamel')`.
Implementing implicit namespace packages (as specified in PEP 420) is preferred to `pkg_resources.declare_namespace`. See https://setuptools.pypa.io/en/latest/references/keywords.html#keyword-namespace-packages
declare_namespace(pkg)
-- Docs: https://docs.pytest.org/en/stable/how-to/capture-warnings.html
============================================================================= 1 passed, 4 warnings in 2.29s ==============================================================================