-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplot.py
537 lines (404 loc) · 16.8 KB
/
plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
import torch
import os
import numpy as np
from torch.utils.tensorboard.writer import SummaryWriter
from typing import Dict, Tuple, List, Optional, Callable, Union
import threading
import atexit
from torch.multiprocessing import Process, Queue, Event
from queue import Empty as EmptyQueue
import sys
import itertools
import PIL
import wandb
plt = None
make_axes_locatable = None
from typing import Callable
import torch
def apply_recursive(d, fn: Callable, filter: Callable = None):
if isinstance(d, list):
return [apply_recursive(da, fn, filter) for da in d]
elif isinstance(d, tuple):
return tuple(apply_recursive(list(d), fn, filter))
elif isinstance(d, dict):
return {k: apply_recursive(v, fn, filter) for k, v in d.items()}
else:
if filter is None or filter(d):
return fn(d)
else:
return d
def apply_to_tensors(d, fn: Callable):
return apply_recursive(d, fn, torch.is_tensor)
def import_matplotlib():
global plt
global make_axes_locatable
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
class CustomPlot:
def to_tensorboard(self, name: str, summary_writer, global_step: int):
pass
def to_wandb(self):
return None
class Histogram(CustomPlot):
def __init__(self, data: Union[torch.Tensor, np.ndarray], n_bins: int = 64):
if torch.is_tensor(data):
data = data.detach().cpu()
self.data = data
self.n_bins = n_bins
def to_tensorboard(self, name: str, summary_writer, global_step: int):
summary_writer.add_histogram(name, self.data, global_step, max_bins=self.n_bins)
def to_wandb(self):
return wandb.Histogram(self.data, num_bins=self.n_bins)
class Image(CustomPlot):
def __init__(self, data: Union[torch.Tensor, np.ndarray], caption: Optional[str] = None):
if torch.is_tensor(data):
data = data.detach().cpu().numpy()
self.data = data.astype(np.float32)
self.caption = caption
def to_tensorboard(self, name, summary_writer, global_step):
if self.data.shape[-1] in [1,3]:
data = np.transpose(self.data, (2,0,1))
else:
data = self.data
summary_writer.add_image(name, data, global_step)
def to_wandb(self):
if self.data.shape[0] in [1, 3]:
data = np.transpose(self.data, (1,2,0))
else:
data = self.data
data = PIL.Image.fromarray(np.ascontiguousarray((data*255.0).astype(np.uint8)), mode="RGB")
return wandb.Image(data, caption = self.caption)
class Scalars(CustomPlot):
def __init__(self, scalar_dict: Dict[str, Union[torch.Tensor, np.ndarray, int, float]]):
self.values = {k: v.item() if torch.is_tensor(v) else v for k, v in scalar_dict.items()}
self.leged = sorted(self.values.keys())
def to_tensorboard(self, name, summary_writer, global_step):
v = {k: v for k, v in self.values.items() if v == v}
summary_writer.add_scalars(name, v, global_step)
def to_wandb(self):
return self.values
class Scalar(CustomPlot):
def __init__(self, val: Union[torch.Tensor, np.ndarray, int, float]):
if torch.is_tensor(val):
val = val.item()
self.val = val
def to_tensorboard(self, name, summary_writer, global_step):
summary_writer.add_scalar(name, self.val, global_step)
def to_wandb(self):
return self.val
class XYChart(CustomPlot):
def __init__(self, data: Dict[str, List[Tuple[float, float]]], markers: List[Tuple[float,float]] = [],
xlim = (None, None), ylim = (None, None)):
import_matplotlib()
self.data = data
self.xlim = xlim
self.ylim = ylim
self.markers = markers
def matplotlib_plot(self):
f = plt.figure()
names = list(sorted(self.data.keys()))
for n in names:
plt.plot([p[0] for p in self.data[n]], [p[1] for p in self.data[n]])
if self.markers:
plt.plot([a[0] for a in self.markers], [a[1] for a in self.markers], linestyle='', marker='o',
markersize=2, zorder=999999)
plt.legend(names)
plt.ylim(*self.xlim)
plt.xlim(*self.ylim)
return f
def to_tensorboard(self, name, summary_writer, global_step):
summary_writer.add_figure(name, self.matplotlib_plot(), global_step)
def to_wandb(self):
return self.matplotlib_plot()
class Heatmap(CustomPlot):
def __init__(self, map: Union[torch.Tensor, np.ndarray], xlabel: str, ylabel: str,
round_decimals: Optional[int] = None, x_marks: Optional[List[str]] = None,
y_marks: Optional[List[str]] = None):
if torch.is_tensor(map):
map = map.detach().cpu().numpy()
self.round_decimals = round_decimals
self.map = map
self.xlabel = xlabel
self.ylabel = ylabel
self.x_marks = x_marks
self.y_marks = y_marks
def to_matplotlib(self):
figure, ax = plt.subplots(figsize=(self.map.shape[0]*0.25 + 2, self.map.shape[1]*0.15+1.5))
im = plt.imshow(self.map, interpolation='nearest', cmap=plt.cm.Blues, aspect='auto')
x_marks = self.x_marks if self.x_marks is not None else [str(i) for i in range(self.map.shape[1])]
assert len(x_marks) == self.map.shape[1]
y_marks = self.y_marks if self.y_marks is not None else [str(i) for i in range(self.map.shape[0])]
assert len(y_marks) == self.map.shape[0]
plt.xticks(np.arange(self.map.shape[1]), x_marks, rotation=45, fontsize=8, ha="right", rotation_mode="anchor")
plt.yticks(np.arange(self.map.shape[0]), y_marks, fontsize=8)
# Use white text if squares are dark; otherwise black.
threshold = self.map.max() / 2.
rmap = np.around(self.map, decimals=self.round_decimals) if self.round_decimals is not None else self.map
for i, j in itertools.product(range(self.map.shape[0]), range(self.map.shape[1])):
color = "white" if self.map[i, j] > threshold else "black"
plt.text(j, i, rmap[i, j], ha="center", va="center", color=color, fontsize=8)
plt.ylabel(self.ylabel)
plt.xlabel(self.xlabel)
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size=0.25, pad=0.1)
plt.colorbar(im, cax)
plt.tight_layout()
return figure
def to_tensorboard(self, name, summary_writer, global_step):
summary_writer.add_figure(name, self.to_matplotlib(), global_step)
def to_wandb(self):
return wandb.Image(self.to_matplotlib())
class ConfusionMatrix(Heatmap):
def __init__(self, map: Union[torch.Tensor, np.ndarray], class_names: Optional[List[str]] = None,
x_marks: Optional[List[str]] = None, y_marks: Optional[List[str]] = None):
if torch.is_tensor(map):
map = map.detach().cpu().numpy()
map = np.transpose(map, (1, 0))
map = map.astype('float') / map.sum(axis=1).clip(1e-6, None)[:, np.newaxis]
if class_names is not None:
assert x_marks is None and y_marks is None
x_marks = y_marks = class_names
super().__init__(map, "predicted", "real", round_decimals=2, x_marks = x_marks, y_marks = y_marks)
class TextTable(CustomPlot):
def __init__(self, header: List[str], data: List[List[str]]):
self.header = header
self.data = data
def to_markdown(self):
res = " | ".join(self.header)+"\n"
res += " | ".join("---" for _ in self.header)+"\n"
return res+"\n".join([" | ".join([x.replace("|", "|") for x in l]) for l in self.data])
def to_tensorboard(self, name, summary_writer, global_step):
summary_writer.add_text(name, self.to_markdown(), global_step)
def to_wandb(self):
return wandb.Table(data=self.data, columns=self.header)
class PlotAsync:
@staticmethod
def worker(self, fn, *args):
try:
self.result = fn(*args)
except:
self.failed = True
raise
def __init__(self, fn: Callable[[any], Dict[str, any]], args: Tuple=()):
self.result = None
self.failed = False
args = apply_to_tensors(args, lambda x: x.detach().cpu().clone())
self.thread = threading.Thread(target = self.worker, args=(self, fn, *args))
self.thread.start()
def get(self, wait: bool) -> Optional[Dict[str, any]]:
if (self.result is None and not wait) or self.failed:
return None
self.thread.join()
return self.result
class Logger:
@staticmethod
def parse_switch_string(s: str) -> Tuple[bool,bool]:
s = s.lower()
if s=="all":
return True, True
elif s=="none":
return False, False
use_tb, use_wandb = False, False
s = s.split(",")
for p in s:
if p=="tb":
use_tb = True
elif p=="wandb":
use_wandb = True
else:
assert False, "Invalid visualization switch: %s" % p
return use_tb, use_wandb
def create_loggers(self):
self.is_sweep = False
self.wandb_id = {}
global wandb
if self.use_wandb:
import wandb
wandb.init(**self.wandb_init_args)
self.wandb_id = {
"sweep_id": wandb.run.sweep_id,
"run_id": wandb.run.id
}
self.is_sweep = bool(wandb.run.sweep_id)
wandb.config["is_sweep"] = self.is_sweep
wandb.config.update(self.wandb_extra_config)
self.save_dir = os.path.join(wandb.run.dir)
os.makedirs(self.save_dir, exist_ok=True)
self.tb_logdir = os.path.join(self.save_dir, "tensorboard")
if self.use_tb:
from torch.utils.tensorboard import SummaryWriter
os.makedirs(self.tb_logdir, exist_ok=True)
self.summary_writer = SummaryWriter(log_dir=self.tb_logdir, flush_secs=30)
else:
self.summary_writer = None
def __init__(self, save_dir: Optional[str] = None, use_tb: bool = False, use_wandb: bool = False,
get_global_step: Optional[Callable[[], int]] = None, wandb_init_args={}, wandb_extra_config={}):
global plt
global wandb
import_matplotlib()
self.use_wandb = use_wandb
self.use_tb = use_tb
self.save_dir = save_dir
self.get_global_step = get_global_step
self.wandb_init_args = wandb_init_args
self.wandb_extra_config = wandb_extra_config
self.create_loggers()
def flatten_dict(self, dict_of_elems: Dict) -> Dict:
res = {}
for k, v in dict_of_elems.items():
if isinstance(v, dict):
v = self.flatten_dict(v)
for k2, v2 in v.items():
res[k+"/"+k2] = v2
else:
res[k] = v
return res
def get_step(self, step: Optional[int] = None) -> Optional[int]:
if step is None and self.get_global_step is not None:
step = self.get_global_step()
return step
def log(self, plotlist: Union[List, Dict, PlotAsync], step: Optional[int] = None):
if not isinstance(plotlist, list):
plotlist = [plotlist]
plotlist = [p.get(True) if isinstance(p, PlotAsync) else p for p in plotlist if p]
plotlist = [p for p in plotlist if p]
if not plotlist:
return
d = {}
for p in plotlist:
d.update(p)
self.log_dict(d, step)
def log_dict(self, dict_of_elems: Dict, step: Optional[int] = None):
dict_of_elems = self.flatten_dict(dict_of_elems)
if not dict_of_elems:
return
dict_of_elems = {k: v.item() if torch.is_tensor(v) and v.nelement()==1 else v for k, v in dict_of_elems.items()}
dict_of_elems = {k: Scalar(v) if isinstance(v, (int, float)) else v for k, v in dict_of_elems.items()}
step = self.get_step(step)
if self.use_wandb:
wandbdict = {}
for k, v in dict_of_elems.items():
if isinstance(v, CustomPlot):
v = v.to_wandb()
if v is None:
continue
if isinstance(v, dict):
for k2, v2 in v.items():
wandbdict[k+"/"+k2] = v2
else:
wandbdict[k] = v
elif isinstance(v, plt.Figure):
wandbdict[k] = v
else:
assert False, f"Invalid data type {type(v)}"
wandbdict["iteration"] = step
wandb.log(wandbdict)
if self.summary_writer is not None:
for k, v in dict_of_elems.items():
if isinstance(v, CustomPlot):
v.to_tensorboard(k, self.summary_writer, step)
elif isinstance(v, plt.Figure):
self.summary_writer.add_figure(k, v, step)
else:
assert False, f"Unsupported type {type(v)} for entry {k}"
def __call__(self, *args, **kwargs):
self.log(*args, **kwargs)
def flush(self):
pass
def finish(self):
pass
class AsyncLogger(Logger):
@staticmethod
def log_fn(self, stop_event: Event):
try:
self._super_create_loggers()
self.resposne_queue.put({k: self.__dict__[k] for k in ["save_dir", "tb_logdir", "is_sweep"]})
while True:
try:
cmd = self.draw_queue.get(True, 0.1)
except EmptyQueue:
if stop_event.is_set():
break
else:
continue
self._super_log(*cmd)
self.resposne_queue.put(True)
except:
print("Logger process crashed.")
raise
finally:
print("Logger: syncing")
if self.use_wandb:
wandb.join()
stop_event.set()
print("Logger process terminating...")
def create_loggers(self):
self._super_create_loggers = super().create_loggers
self.stop_event = Event()
self.proc = Process(target=self.log_fn, args=(self, self.stop_event))
self.proc.start()
atexit.register(self.finish)
def __init__(self, *args, **kwargs):
self.queue = []
self.draw_queue = Queue()
self.resposne_queue = Queue()
self._super_log = super().log
self.waiting = 0
super().__init__(*args, **kwargs)
self.__dict__.update(self.resposne_queue.get(True))
def log(self, plotlist, step=None):
if self.stop_event.is_set():
return
if not isinstance(plotlist, list):
plotlist = [plotlist]
plotlist = [p for p in plotlist if p]
if not plotlist:
return
plotlist = apply_to_tensors(plotlist, lambda x: x.detach().cpu())
self.queue.append((plotlist, step))
self.flush(wait = False)
def enqueue(self, data, step: Optional[int]):
self.draw_queue.put((data, step))
self.waiting += 1
def wait_logger(self, wait = False):
cond = (lambda: not self.resposne_queue.empty()) if not wait else (lambda: self.waiting>0)
already_printed = False
while cond() and not self.stop_event.is_set():
will_wait = self.resposne_queue.empty()
if will_wait and not already_printed:
already_printed = True
sys.stdout.write("Warning: waiting for logger... ")
sys.stdout.flush()
try:
self.resposne_queue.get(True, 0.2)
except EmptyQueue:
continue
self.waiting -= 1
if already_printed:
print("done.")
def flush(self, wait: bool = True):
while self.queue:
plotlist, step = self.queue[0]
for i, p in enumerate(plotlist):
if isinstance(p, PlotAsync):
res = p.get(wait)
if res is not None:
plotlist[i] = res
else:
if wait:
assert p.failed
# Exception in the worker thread
print("Exception detected in a PlotAsync object. Syncing logger and ignoring further plots.")
self.wait_logger(True)
self.stop_event.set()
self.proc.join()
return
self.queue.pop(0)
self.enqueue(plotlist, step)
self.wait_logger(wait)
def finish(self):
if self.stop_event.is_set():
return
self.flush(True)
self.stop_event.set()
self.proc.join()