Greenland discharge is repackaged from:
- Paper: Mankoff (2020) http://doi.org/10.5194/essd-12-1367-2020
- Code (original): https://github.com/GEUS-Glaciology-and-Climate/ice_discharge
- Data: https://doi.org/10.22008/promice/data/ice_discharge/d/v02
This product is generated from flux gates ~5 km upstream of the terminus.
It lacks
- Terminus retreat, which should add ~10 % over the last two decades
- Greene (2024) http://doi.org/10.1038/s41586-023-06863-2
- Kochtitzky (2023) http://doi.org/10.1029/2023gl104095
- Splitting output between icebergs and submarine melt, which is ~50 % +- 30 %
- Rignot (2010) http://doi.org/10.1038/NGEO765
- Peripheral glaciers
- Adds 5 Gt/yr for recent years from Bollen (2023) http://doi.org/10.1017/jog.2022.52
<xarray.Dataset> Size: 12kB Dimensions: (region: 7, time: 186) Coordinates: * time (time) datetime64[ns] 1kB 1840-01-01 1841-01-01 ... 2025-01-01 * region (region) int32 28B 1 2 3 4 5 6 7 Data variables: discharge (region, time) float32 5kB ... err (region, time) float32 5kB ... region_name (region) <U2 56B ... Attributes: (12/14) featureType: timeSeries title: Greenland ice sheet discharge by Mouginot region summary: Greenland ice sheet discharge by Mouginot region keywords: Greenland; Mass; Mass balance source: git commit: 54a4452 creator_name: Ken Mankoff ... ... institution: NASA GISS references: TBD product_version: 1.0 history: TBD Conventions: CF-1.8 DOI: https://doi.org/10.5281/zenodo.14020895
import xarray as xr
ds = xr.open_dataset('dat/GL_discharge.nc')
df = ds['discharge'].to_dataframe()['discharge']
df = df.unstack().T
df.columns = ds['region_name'].values
ax = df.plot(drawstyle='steps-post')
_ = ax.set_ylabel('Discharge [Gt yr$^{-1}$]')
import xarray as xr
ds = xr.open_dataset('dat/GL_discharge.nc')
ds = ds.sel({'time': slice('1800-01-01','2024-12-31')})
df = ds['discharge'].to_dataframe()['discharge']
df = df.unstack().T
df.columns = [str(_[0]) + ' ['+_[1]+']' for _ in zip(ds['region'].values, ds['region_name'].values)]
df['GL'] = df.sum(axis='columns')
df.index = [str(_)[0:4] for _ in df.index]
df.round()
1 [CE] | 2 [CW] | 3 [NE] | 4 [NO] | 5 [NW] | 6 [SE] | 7 [SW] | GL | |
---|---|---|---|---|---|---|---|---|
1840 | 61 | 61 | 20 | 21 | 83 | 118 | 18 | 382 |
1841 | 61 | 61 | 20 | 21 | 83 | 118 | 18 | 382 |
1842 | 61 | 61 | 20 | 21 | 83 | 118 | 18 | 382 |
1843 | 61 | 61 | 20 | 21 | 83 | 118 | 18 | 382 |
1844 | 61 | 61 | 20 | 21 | 83 | 118 | 18 | 382 |
1845 | 62 | 62 | 20 | 22 | 85 | 121 | 18 | 391 |
1846 | 62 | 62 | 20 | 22 | 85 | 120 | 18 | 388 |
1847 | 62 | 62 | 20 | 22 | 85 | 121 | 18 | 389 |
1848 | 63 | 63 | 21 | 22 | 87 | 124 | 18 | 399 |
1849 | 63 | 63 | 21 | 22 | 87 | 123 | 18 | 397 |
1850 | 63 | 63 | 21 | 22 | 87 | 124 | 18 | 399 |
1851 | 62 | 62 | 20 | 22 | 85 | 121 | 18 | 391 |
1852 | 64 | 64 | 21 | 22 | 88 | 125 | 19 | 403 |
1853 | 65 | 66 | 22 | 23 | 90 | 128 | 19 | 412 |
1854 | 65 | 65 | 21 | 23 | 89 | 127 | 19 | 409 |
1855 | 65 | 65 | 21 | 23 | 89 | 126 | 19 | 407 |
1856 | 64 | 64 | 21 | 23 | 89 | 126 | 19 | 406 |
1857 | 66 | 66 | 22 | 23 | 90 | 128 | 19 | 414 |
1858 | 65 | 65 | 21 | 23 | 90 | 127 | 19 | 411 |
1859 | 64 | 64 | 21 | 22 | 88 | 125 | 19 | 404 |
1860 | 64 | 64 | 21 | 22 | 88 | 125 | 19 | 402 |
1861 | 63 | 64 | 21 | 22 | 87 | 124 | 18 | 400 |
1862 | 63 | 63 | 21 | 22 | 86 | 122 | 18 | 395 |
1863 | 60 | 60 | 20 | 21 | 82 | 117 | 17 | 378 |
1864 | 58 | 59 | 19 | 20 | 80 | 114 | 17 | 368 |
1865 | 58 | 58 | 19 | 20 | 80 | 114 | 17 | 367 |
1866 | 57 | 57 | 19 | 20 | 79 | 112 | 17 | 361 |
1867 | 59 | 59 | 19 | 21 | 81 | 115 | 17 | 369 |
1868 | 58 | 58 | 19 | 20 | 80 | 113 | 17 | 366 |
1869 | 59 | 59 | 19 | 21 | 81 | 116 | 17 | 373 |
1870 | 60 | 60 | 20 | 21 | 83 | 117 | 17 | 378 |
1871 | 62 | 62 | 20 | 22 | 85 | 120 | 18 | 388 |
1872 | 63 | 64 | 21 | 22 | 87 | 124 | 18 | 400 |
1873 | 63 | 63 | 21 | 22 | 86 | 122 | 18 | 395 |
1874 | 64 | 64 | 21 | 22 | 88 | 125 | 19 | 402 |
1875 | 64 | 64 | 21 | 22 | 88 | 125 | 19 | 402 |
1876 | 64 | 64 | 21 | 22 | 87 | 124 | 18 | 401 |
1877 | 64 | 64 | 21 | 22 | 88 | 125 | 19 | 402 |
1878 | 63 | 63 | 21 | 22 | 86 | 122 | 18 | 395 |
1879 | 63 | 63 | 21 | 22 | 87 | 123 | 18 | 398 |
1880 | 63 | 64 | 21 | 22 | 87 | 124 | 18 | 400 |
1881 | 64 | 64 | 21 | 22 | 88 | 124 | 19 | 401 |
1882 | 64 | 64 | 21 | 22 | 87 | 124 | 18 | 401 |
1883 | 63 | 63 | 21 | 22 | 86 | 123 | 18 | 396 |
1884 | 62 | 62 | 20 | 22 | 85 | 121 | 18 | 391 |
1885 | 62 | 62 | 20 | 22 | 85 | 121 | 18 | 391 |
1886 | 62 | 62 | 20 | 22 | 85 | 120 | 18 | 388 |
1887 | 62 | 62 | 20 | 22 | 85 | 120 | 18 | 388 |
1888 | 63 | 64 | 21 | 22 | 87 | 124 | 18 | 400 |
1889 | 63 | 63 | 21 | 22 | 87 | 123 | 18 | 397 |
1890 | 64 | 64 | 21 | 22 | 87 | 124 | 18 | 401 |
1891 | 64 | 64 | 21 | 22 | 88 | 125 | 19 | 404 |
1892 | 65 | 65 | 21 | 23 | 89 | 127 | 19 | 409 |
1893 | 66 | 66 | 22 | 23 | 90 | 128 | 19 | 414 |
1894 | 64 | 64 | 21 | 22 | 88 | 125 | 19 | 404 |
1895 | 65 | 65 | 21 | 23 | 89 | 126 | 19 | 407 |
1896 | 65 | 65 | 21 | 23 | 89 | 127 | 19 | 408 |
1897 | 65 | 65 | 21 | 23 | 89 | 126 | 19 | 407 |
1898 | 64 | 64 | 21 | 22 | 88 | 124 | 19 | 401 |
1899 | 63 | 63 | 21 | 22 | 87 | 124 | 18 | 399 |
1900 | 65 | 65 | 21 | 23 | 90 | 127 | 19 | 411 |
1901 | 65 | 65 | 21 | 23 | 89 | 126 | 19 | 407 |
1902 | 66 | 66 | 22 | 23 | 90 | 128 | 19 | 413 |
1903 | 65 | 66 | 22 | 23 | 90 | 128 | 19 | 413 |
1904 | 67 | 67 | 22 | 23 | 92 | 131 | 19 | 422 |
1905 | 67 | 67 | 22 | 23 | 92 | 130 | 19 | 421 |
1906 | 66 | 66 | 22 | 23 | 91 | 129 | 19 | 416 |
1907 | 67 | 67 | 22 | 23 | 92 | 131 | 19 | 421 |
1908 | 67 | 67 | 22 | 23 | 92 | 131 | 19 | 421 |
1909 | 68 | 68 | 22 | 24 | 93 | 132 | 20 | 425 |
1910 | 67 | 67 | 22 | 23 | 92 | 131 | 19 | 422 |
1911 | 67 | 67 | 22 | 24 | 92 | 131 | 20 | 423 |
1912 | 67 | 67 | 22 | 24 | 93 | 132 | 20 | 425 |
1913 | 67 | 67 | 22 | 24 | 93 | 131 | 20 | 424 |
1914 | 65 | 65 | 21 | 23 | 90 | 127 | 19 | 410 |
1915 | 65 | 65 | 21 | 23 | 89 | 127 | 19 | 410 |
1916 | 65 | 65 | 21 | 23 | 89 | 127 | 19 | 409 |
1917 | 65 | 65 | 22 | 23 | 90 | 127 | 19 | 411 |
1918 | 64 | 64 | 21 | 22 | 88 | 125 | 19 | 403 |
1919 | 63 | 63 | 21 | 22 | 87 | 124 | 18 | 399 |
1920 | 64 | 64 | 21 | 22 | 88 | 125 | 19 | 404 |
1921 | 64 | 64 | 21 | 22 | 88 | 124 | 19 | 401 |
1922 | 63 | 63 | 21 | 22 | 86 | 122 | 18 | 395 |
1923 | 63 | 63 | 21 | 22 | 86 | 123 | 18 | 396 |
1924 | 64 | 64 | 21 | 22 | 88 | 125 | 19 | 404 |
1925 | 64 | 64 | 21 | 23 | 88 | 125 | 19 | 405 |
1926 | 66 | 66 | 22 | 23 | 91 | 129 | 19 | 415 |
1927 | 67 | 67 | 22 | 24 | 92 | 131 | 20 | 422 |
1928 | 70 | 70 | 23 | 25 | 96 | 137 | 20 | 442 |
1929 | 71 | 71 | 23 | 25 | 97 | 138 | 21 | 445 |
1930 | 71 | 71 | 23 | 25 | 97 | 138 | 21 | 446 |
1931 | 74 | 74 | 24 | 26 | 102 | 145 | 22 | 467 |
1932 | 74 | 74 | 24 | 26 | 101 | 144 | 21 | 465 |
1933 | 74 | 74 | 24 | 26 | 102 | 144 | 22 | 466 |
1934 | 73 | 73 | 24 | 25 | 100 | 142 | 21 | 458 |
1935 | 73 | 73 | 24 | 26 | 101 | 143 | 21 | 461 |
1936 | 74 | 74 | 24 | 26 | 102 | 144 | 21 | 465 |
1937 | 72 | 72 | 24 | 25 | 99 | 140 | 21 | 453 |
1938 | 71 | 71 | 23 | 25 | 98 | 139 | 21 | 448 |
1939 | 71 | 72 | 24 | 25 | 98 | 139 | 21 | 450 |
1940 | 71 | 71 | 23 | 25 | 97 | 138 | 21 | 446 |
1941 | 70 | 71 | 23 | 25 | 97 | 138 | 20 | 444 |
1942 | 70 | 70 | 23 | 24 | 96 | 136 | 20 | 438 |
1943 | 69 | 69 | 23 | 24 | 95 | 135 | 20 | 437 |
1944 | 69 | 70 | 23 | 24 | 95 | 136 | 20 | 437 |
1945 | 68 | 68 | 22 | 24 | 94 | 133 | 20 | 429 |
1946 | 68 | 68 | 22 | 24 | 94 | 133 | 20 | 429 |
1947 | 67 | 68 | 22 | 24 | 93 | 132 | 20 | 425 |
1948 | 68 | 68 | 22 | 24 | 94 | 133 | 20 | 430 |
1949 | 69 | 69 | 23 | 24 | 95 | 135 | 20 | 435 |
1950 | 70 | 70 | 23 | 24 | 96 | 136 | 20 | 440 |
1951 | 71 | 71 | 23 | 25 | 97 | 138 | 21 | 445 |
1952 | 71 | 71 | 23 | 25 | 98 | 139 | 21 | 449 |
1953 | 71 | 71 | 23 | 25 | 98 | 139 | 21 | 448 |
1954 | 70 | 70 | 23 | 25 | 96 | 137 | 20 | 441 |
1955 | 69 | 69 | 23 | 24 | 94 | 134 | 20 | 432 |
1956 | 68 | 68 | 22 | 24 | 93 | 132 | 20 | 426 |
1957 | 68 | 68 | 22 | 24 | 94 | 133 | 20 | 430 |
1958 | 68 | 69 | 23 | 24 | 94 | 134 | 20 | 431 |
1959 | 68 | 68 | 22 | 24 | 94 | 133 | 20 | 430 |
1960 | 70 | 70 | 23 | 25 | 96 | 137 | 20 | 441 |
1961 | 71 | 71 | 23 | 25 | 98 | 139 | 21 | 447 |
1962 | 72 | 72 | 24 | 25 | 99 | 140 | 21 | 453 |
1963 | 70 | 70 | 23 | 25 | 97 | 137 | 20 | 442 |
1964 | 69 | 69 | 23 | 24 | 95 | 134 | 20 | 434 |
1965 | 69 | 69 | 23 | 24 | 95 | 135 | 20 | 436 |
1966 | 68 | 68 | 22 | 24 | 93 | 133 | 20 | 428 |
1967 | 67 | 67 | 22 | 24 | 93 | 131 | 20 | 424 |
1968 | 67 | 67 | 22 | 24 | 92 | 131 | 20 | 423 |
1969 | 67 | 67 | 22 | 24 | 93 | 132 | 20 | 424 |
1970 | 67 | 67 | 22 | 23 | 92 | 131 | 19 | 421 |
1971 | 67 | 67 | 22 | 23 | 92 | 131 | 19 | 421 |
1972 | 65 | 65 | 21 | 23 | 90 | 127 | 19 | 411 |
1973 | 65 | 65 | 21 | 23 | 89 | 126 | 19 | 408 |
1974 | 64 | 65 | 21 | 23 | 89 | 126 | 19 | 406 |
1975 | 65 | 65 | 21 | 23 | 89 | 127 | 19 | 408 |
1976 | 65 | 66 | 22 | 23 | 90 | 128 | 19 | 413 |
1977 | 66 | 66 | 22 | 23 | 90 | 128 | 19 | 414 |
1978 | 67 | 67 | 22 | 24 | 92 | 131 | 20 | 423 |
1979 | 68 | 68 | 22 | 24 | 93 | 132 | 20 | 425 |
1980 | 67 | 68 | 22 | 24 | 93 | 132 | 20 | 425 |
1981 | 68 | 68 | 22 | 24 | 93 | 132 | 20 | 426 |
1982 | 68 | 68 | 22 | 24 | 93 | 132 | 20 | 427 |
1983 | 66 | 66 | 22 | 23 | 91 | 129 | 19 | 418 |
1984 | 66 | 66 | 22 | 23 | 91 | 129 | 19 | 416 |
1985 | 67 | 67 | 22 | 23 | 92 | 131 | 19 | 421 |
1986 | 64 | 73 | 22 | 23 | 93 | 142 | 21 | 438 |
1987 | 65 | 72 | 23 | 24 | 90 | 143 | 21 | 437 |
1988 | 67 | 70 | 22 | 23 | 93 | 132 | 21 | 427 |
1989 | 68 | 71 | 22 | 23 | 99 | 126 | 21 | 431 |
1990 | 70 | 68 | 22 | 23 | 102 | 127 | 22 | 433 |
1991 | 70 | 67 | 23 | 23 | 97 | 129 | 22 | 432 |
1992 | 73 | 68 | 23 | 23 | 95 | 132 | 21 | 436 |
1993 | 73 | 67 | 24 | 23 | 96 | 132 | 20 | 435 |
1994 | 67 | 67 | 24 | 25 | 94 | 136 | 18 | 432 |
1995 | 62 | 64 | 22 | 26 | 91 | 137 | 18 | 420 |
1996 | 65 | 66 | 21 | 25 | 90 | 136 | 20 | 424 |
1997 | 66 | 68 | 20 | 23 | 90 | 134 | 20 | 421 |
1998 | 67 | 72 | 22 | 22 | 90 | 130 | 18 | 421 |
1999 | 66 | 73 | 22 | 25 | 89 | 132 | 18 | 426 |
2000 | 66 | 78 | 22 | 24 | 90 | 130 | 20 | 430 |
2001 | 66 | 79 | 23 | 23 | 88 | 125 | 19 | 424 |
2002 | 69 | 80 | 25 | 23 | 89 | 132 | 19 | 438 |
2003 | 73 | 83 | 24 | 23 | 92 | 138 | 20 | 452 |
2004 | 77 | 83 | 23 | 24 | 95 | 145 | 20 | 466 |
2005 | 83 | 83 | 24 | 23 | 96 | 146 | 20 | 475 |
2006 | 82 | 85 | 24 | 24 | 94 | 139 | 20 | 469 |
2007 | 78 | 85 | 24 | 25 | 94 | 136 | 19 | 462 |
2008 | 76 | 86 | 25 | 26 | 97 | 140 | 19 | 468 |
2009 | 75 | 88 | 24 | 23 | 99 | 143 | 19 | 472 |
2010 | 74 | 88 | 25 | 27 | 100 | 144 | 18 | 476 |
2011 | 75 | 88 | 25 | 25 | 104 | 144 | 20 | 481 |
2012 | 75 | 93 | 25 | 24 | 103 | 140 | 20 | 480 |
2013 | 75 | 94 | 26 | 24 | 106 | 142 | 20 | 486 |
2014 | 72 | 93 | 27 | 26 | 108 | 140 | 19 | 485 |
2015 | 72 | 92 | 28 | 26 | 108 | 142 | 19 | 487 |
2016 | 71 | 89 | 28 | 26 | 110 | 137 | 19 | 481 |
2017 | 76 | 81 | 29 | 27 | 112 | 147 | 19 | 490 |
2018 | 79 | 78 | 30 | 28 | 113 | 145 | 19 | 491 |
2019 | 80 | 79 | 30 | 28 | 109 | 152 | 19 | 497 |
2020 | 84 | 84 | 30 | 27 | 108 | 153 | 19 | 506 |
2021 | 81 | 89 | 30 | 27 | 110 | 151 | 20 | 507 |
2022 | 83 | 83 | 30 | 26 | 112 | 149 | 19 | 503 |
2023 | 80 | 83 | 30 | 26 | 110 | 142 | 18 | 490 |
2024 | 79 | 84 | 30 | 26 | 113 | 140 | 19 | 491 |
df.describe().round()
1 [CE] | 2 [CW] | 3 [NE] | 4 [NO] | 5 [NW] | 6 [SE] | 7 [SW] | GL | |
---|---|---|---|---|---|---|---|---|
count | 185 | 185 | 185 | 185 | 185 | 185 | 185 | 185 |
mean | 67 | 69 | 22 | 23 | 92 | 131 | 19 | 424 |
std | 5 | 8 | 2 | 2 | 7 | 8 | 1 | 30 |
min | 57 | 57 | 19 | 20 | 79 | 112 | 17 | 361 |
25% | 64 | 64 | 21 | 22 | 88 | 125 | 18 | 402 |
50% | 66 | 67 | 22 | 23 | 91 | 130 | 19 | 421 |
75% | 70 | 71 | 23 | 24 | 95 | 136 | 20 | 438 |
max | 84 | 94 | 30 | 28 | 113 | 153 | 22 | 507 |
export SERVER_URL=https://dataverse.geus.dk
export PERSISTENT_IDENTIFIER=doi:10.22008/FK2/OHI23Z
export METADATA_FORMAT=dataverse_json # ddi dataverse_json schema.org Datacite oai_datacite
curl "$SERVER_URL/api/datasets/export?exporter=$METADATA_FORMAT&persistentId=$PERSISTENT_IDENTIFIER" | jq .datasetVersion.versionNumber
890
mkdir -p tmp/greenland_discharge
pushd tmp/greenland_discharge
# wget -r -e robots=off -nH --cut-dirs=3 --content-disposition "https://dataverse.geus.dk/api/datasets/:persistentId/dirindex?persistentId=doi:10.22008/FK2/OHI23Z"
wget https://thredds.geus.dk/thredds/fileServer/MassBalance/MB_region.nc -O MB_region.nc
popd
- Annual discharge
- Group by ROI
import xarray as xr
import numpy as np
ds = xr.open_dataset('./tmp/greenland_discharge/MB_region.nc')
# Limit to discharge
ds = ds[['D_ROI','D_ROI_err','D']]
# Drop partial years
this_yr = ds['time'].to_series().iloc[-1].year
ds = ds.sel({'time':slice('1800',str(this_yr))})
# Scale early values to annual
ds.loc[{'time': slice('1840-01-01','1985-12-31')}] *= 365
# Resample by year
ds = ds.resample({'time':'YS'}).sum()
# Prior to 1986 there is no regional resolution, just one value for all of Greenland.
# Split into regions by taking the 1990s percent of discharge per region, and assuming the historical GIS-wide discharge maintained that distribution (even if magnitude changed).
ds_ratio = ds['D_ROI'].loc[{'time': slice('1990-01-01','1999-12-31')}].sum(dim='time')
ds_ratio = ds_ratio / sum(ds_ratio)
# print(ds_ratio)
for r in ds['region']:
# Set regional values to the average of the first 5 years when there is regional resolution
ds['D_ROI'].sel({'region':r}).loc[{'time': slice('1840-01-01','1985-12-31')}] = ds['D'].loc[{'time': slice('1840-01-01','1985-12-31')}] * ds_ratio.sel(region=r.values).values
# Set regional uncertainty to the full range of observed values
errmax = ds['D_ROI'].sel({'region':r, 'time':slice('1986-01-01','1999-12-31')}).max()
errmin = ds['D_ROI'].sel({'region':r, 'time':slice('1986-01-01','1999-12-31')}).min()
ds['D_ROI_err'].sel({'region':r}).loc[{'time': slice('1840-01-01','1985-12-31')}] = (errmax-errmin)
ds = ds.transpose()
ds = ds.rename({'D_ROI':'discharge','D_ROI_err':'err'})
ds = ds.drop_vars('D')
ds['discharge'].attrs['units'] = 'Gt yr-1'
ds['err'].attrs['units'] = 'Gt yr-1'
ds['discharge'].attrs['long_name'] = 'Marine discharge. Includes both calving and submarine melt. Some calving is equivalent to submarine melt if using at fjord mouth'
ds = ds.sortby('region')
ds = ds.rename_dims({'region': 'region_name'})
ds = ds.rename({'region': 'region_name'})
ds = ds.set_index(region_name='region_name')
ds['region'] = (('region_name'),np.arange(7).astype(np.int32) + 1)
ds = ds.set_coords('region')
ds = ds.swap_dims({'region_name':'region'})
ds = ds.reset_coords('region_name')
ds['discharge'].attrs['standard_name'] = 'tendency_of_land_ice_mass_due_to_calving'
ds['discharge'].attrs['units'] = 'Gt yr-1'
ds['err'].attrs['standard_name'] = 'tendency_of_land_ice_mass_due_to_calving'
ds['time'].attrs['long_name'] = 'time'
ds['region'].attrs['long_name'] = 'Mouginot (2019) region'
ds.attrs['title'] = 'Greenland ice sheet discharge by Mouginot region'
ds.attrs['history'] = 'TBD'
ds.attrs['Conventions'] = 'CF-1.8'
ds.attrs['summary'] = 'Greenland ice sheet discharge by Mouginot region'
ds.attrs['creator_name'] = 'Ken Mankoff'
ds.attrs['creator_email'] = '[email protected]'
ds.attrs['institution'] = 'NASA GISS'
ds.attrs['references'] = 'TBD'
ds.attrs['DOI'] = 'https://doi.org/10.5281/zenodo.14020895'
comp = dict(zlib=True, complevel=5)
encoding = {} # var: comp for var in items}
encoding['time'] = {'dtype': 'i4'}
!rm ./dat/GL_discharge.nc
ds.to_netcdf('./dat/GL_discharge.nc', encoding=encoding)
!ncdump -h ./dat/GL_discharge.nc
netcdf GL_discharge { dimensions: region = 7 ; time = 186 ; variables: float discharge(region, time) ; discharge:_FillValue = NaNf ; discharge:long_name = "Marine discharge. Includes both calving and submarine melt. Some calving is equivalent to submarine melt if using at fjord mouth" ; discharge:standard_name = "tendency_of_land_ice_mass_due_to_calving" ; discharge:units = "Gt yr-1" ; float err(region, time) ; err:_FillValue = NaNf ; err:long_name = "Marine mass balance uncertainty" ; err:standard_name = "tendency_of_land_ice_mass_due_to_calving" ; err:units = "Gt yr-1" ; string region_name(region) ; region_name:long_name = "Mouginot 2019 regions" ; int time(time) ; time:cf_role = "timeseries_id" ; time:standard_name = "time" ; time:axis = "T" ; time:long_name = "time" ; time:units = "days since 1840-01-01 00:00:00" ; time:calendar = "proleptic_gregorian" ; int region(region) ; region:long_name = "Mouginot (2019) region" ; // global attributes: :featureType = "timeSeries" ; :title = "Greenland ice sheet discharge by Mouginot region" ; :summary = "Greenland ice sheet discharge by Mouginot region" ; :keywords = "Greenland; Mass; Mass balance" ; :source = "git commit: 54a4452" ; :creator_name = "Ken Mankoff" ; :creator_email = "[email protected]" ; :creator_url = "http://kenmankoff.com" ; :institution = "NASA GISS" ; :references = "TBD" ; :product_version = 1. ; :history = "TBD" ; :Conventions = "CF-1.8" ; :DOI = "https://doi.org/10.5281/zenodo.14020895" ; } /tmp/ipykernel_613332/4182150838.py:47: UserWarning: rename 'region' to 'region_name' does not create an index anymore. Try using swap_dims instead or use set_index after rename to create an indexed coordinate. ds = ds.rename({'region': 'region_name'})