-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_clustering.py
150 lines (124 loc) · 5.78 KB
/
run_clustering.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import torch
from torch_geometric.datasets import Planetoid, CitationFull
from torch_geometric.loader import DataLoader
from torch_geometric.transforms import Compose
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping
import hydra
from omegaconf import DictConfig, OmegaConf
# Local imports
from source.data import PyGSPDataset
from source.pl_modules import ClusterModule
from source.models import ClusterModel
from source.utils import (register_resolvers,
reduce_precision,
find_devices,
NormalizeAdjSparse_with_ea,
SortNodes,
CoefficientScheduler,
CustomTensorBoardLogger)
register_resolvers()
reduce_precision()
@hydra.main(version_base=None, config_path="config", config_name="run_clustering")
def run(cfg : DictConfig) -> float:
print(OmegaConf.to_yaml(cfg, resolve=True))
### 📊 Load data
trans = Compose([SortNodes(), NormalizeAdjSparse_with_ea(delta=0.85)]) if cfg.pooler.name == 'bnpool' else SortNodes()
if cfg.dataset.family=='Planetoid':
torch_dataset = Planetoid(root='data/', name=cfg.dataset.name,
split=cfg.dataset.hparams.split,
pre_transform=trans, force_reload=True)
num_classes = torch_dataset.num_classes
elif cfg.dataset.family=='CitationFull':
torch_dataset = CitationFull(root='data/', name=cfg.dataset.name,
pre_transform=trans, force_reload=True)
num_classes = torch_dataset.num_classes
elif cfg.dataset.family=='PyGSPDataset':
torch_dataset = PyGSPDataset(root='data/PyGSP', name=cfg.dataset.name,
kwargs=cfg.dataset.params, force_reload=cfg.dataset.hparams.reload,
pre_transform=trans)
num_classes = cfg.architecture.hparams.pool_ratio
else:
raise ValueError(f"Dataset {cfg.dataset.family} not recognized")
num_clusters = cfg.pooler.hparams.n_clusters if cfg.pooler.name == 'bnpool' else num_classes
data_loader = DataLoader(torch_dataset, batch_size=cfg.batch_size, shuffle=False)
### 🧠 Load the model
torch_model = ClusterModel(
in_channels=torch_dataset.num_features, # Size of node features
num_layers_pre=cfg.architecture.hparams.num_layers_pre, # Number of GIN layers before pooling
hidden_channels=cfg.architecture.hparams.hidden_channels, # Dimensionality of node embeddings
activation=cfg.architecture.hparams.activation, # Activation of the MLP in GIN
use_cache=cfg.architecture.hparams.use_cache, # Cache computation of dense adjacency
pooler=cfg.pooler.name, # Pooling method
pool_kwargs=cfg.pooler.hparams, # Pooling method kwargs
pooled_nodes=num_classes, # Number of nodes after pooling
)
### 📈 Optimizer scheduler
if cfg.get('lr_scheduler') is not None:
scheduler_class = getattr(torch.optim.lr_scheduler, cfg.lr_scheduler.name)
scheduler_kwargs = dict(cfg.lr_scheduler.hparams)
else:
scheduler_class = scheduler_kwargs = None
### ⚡ Lightning module
lightning_model = ClusterModule(
model=torch_model,
num_classes=num_classes,
num_clusters=num_clusters,
optim_class=getattr(torch.optim, 'Adam'),
optim_kwargs=dict(cfg.optimizer.hparams),
scheduler_class=scheduler_class,
scheduler_kwargs=scheduler_kwargs,
log_lr=cfg.log_lr,
log_grad_norm=cfg.log_grad_norm,
plot_dict=dict(cfg.plot_preds_at_epoch))
### 🪵 Logger
if cfg.get('logger').get('backend') is None:
logger = None
elif cfg.logger.backend == 'tensorboard':
logger = CustomTensorBoardLogger(save_dir=cfg.logger.logdir, name=None, version='')
logger.cfg = cfg
else:
raise NotImplementedError("Logger backend not supported.")
### 📞 Callbacks
cb = []
if cfg.callbacks.early_stop:
early_stop_callback = EarlyStopping(
monitor=cfg.callbacks.monitor,
patience=cfg.callbacks.patience,
mode=cfg.callbacks.mode
)
cb.append(early_stop_callback)
if cfg.callbacks.checkpoints:
checkpoint_callback = ModelCheckpoint(
save_top_k=1,
monitor=cfg.callbacks.monitor,
mode=cfg.callbacks.mode,
dirpath=cfg.logger.logdir+"/checkpoints/",
filename=cfg.architecture.name + "_" + cfg.pooler.name + "___{epoch:03d}-{NMI:e}",
)
cb.append(checkpoint_callback)
if cfg.callbacks.params_scheduling.activate:
parameter_scheduler = CoefficientScheduler(
epochs=cfg.callbacks.params_scheduling.epochs,
first_eta=cfg.callbacks.params_scheduling.first_eta,
last_eta=cfg.callbacks.params_scheduling.last_eta,
mode=cfg.callbacks.params_scheduling.mode)
cb.append(parameter_scheduler)
### 🚀 Trainer
trainer = pl.Trainer(
logger=logger,
callbacks=cb,
devices=find_devices(1),
max_epochs=cfg.epochs,
gradient_clip_val=cfg.clip_val,
accelerator='gpu',
)
trainer.fit(lightning_model, data_loader)
if cfg.callbacks.checkpoints:
trainer.test(lightning_model, data_loader, ckpt_path='best')
else:
trainer.test(lightning_model, data_loader)
logger.finalize('success')
return trainer.callback_metrics["test_loss"].item()
if __name__ == "__main__":
run()