forked from PaddlePaddle/ERNIE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference.cc
230 lines (191 loc) · 6 KB
/
inference.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gflags/gflags.h>
#include <glog/logging.h>
#include <paddle_inference_api.h>
#include <chrono>
#include <fstream>
#include <numeric>
#include <sstream>
#include <string>
#include <vector>
DEFINE_string(model_dir, "", "model directory");
DEFINE_string(data, "", "input data path");
DEFINE_int32(repeat, 1, "repeat");
template <typename T>
void GetValueFromStream(std::stringstream *ss, T *t) {
(*ss) >> (*t);
}
template <>
void GetValueFromStream<std::string>(std::stringstream *ss, std::string *t) {
*t = ss->str();
}
// Split string to vector
template <typename T>
void Split(const std::string &line, char sep, std::vector<T> *v) {
std::stringstream ss;
T t;
for (auto c : line) {
if (c != sep) {
ss << c;
} else {
GetValueFromStream<T>(&ss, &t);
v->push_back(std::move(t));
ss.str({});
ss.clear();
}
}
if (!ss.str().empty()) {
GetValueFromStream<T>(&ss, &t);
v->push_back(std::move(t));
ss.str({});
ss.clear();
}
}
template <typename T>
constexpr paddle::PaddleDType GetPaddleDType();
template <>
constexpr paddle::PaddleDType GetPaddleDType<int64_t>() {
return paddle::PaddleDType::INT64;
}
template <>
constexpr paddle::PaddleDType GetPaddleDType<float>() {
return paddle::PaddleDType::FLOAT32;
}
// Parse tensor from string
template <typename T>
bool ParseTensor(const std::string &field, paddle::PaddleTensor *tensor) {
std::vector<std::string> data;
Split(field, ':', &data);
if (data.size() < 2) return false;
std::string shape_str = data[0];
std::vector<int> shape;
Split(shape_str, ' ', &shape);
std::string mat_str = data[1];
std::vector<T> mat;
Split(mat_str, ' ', &mat);
tensor->shape = shape;
auto size =
std::accumulate(shape.begin(), shape.end(), 1, std::multiplies<int>()) *
sizeof(T);
tensor->data.Resize(size);
std::copy(mat.begin(), mat.end(), static_cast<T *>(tensor->data.data()));
tensor->dtype = GetPaddleDType<T>();
return true;
}
// Parse input tensors from string
bool ParseLine(const std::string &line,
std::vector<paddle::PaddleTensor> *tensors) {
std::vector<std::string> fields;
Split(line, ';', &fields);
if (fields.size() < 5) return false;
tensors->clear();
tensors->reserve(5);
int i = 0;
// src_id
paddle::PaddleTensor src_id;
ParseTensor<int64_t>(fields[i++], &src_id);
tensors->push_back(src_id);
// pos_id
paddle::PaddleTensor pos_id;
ParseTensor<int64_t>(fields[i++], &pos_id);
tensors->push_back(pos_id);
// segment_id
paddle::PaddleTensor segment_id;
ParseTensor<int64_t>(fields[i++], &segment_id);
tensors->push_back(segment_id);
// self_attention_bias
paddle::PaddleTensor self_attention_bias;
ParseTensor<float>(fields[i++], &self_attention_bias);
tensors->push_back(self_attention_bias);
// next_segment_index
paddle::PaddleTensor next_segment_index;
ParseTensor<int64_t>(fields[i++], &next_segment_index);
tensors->push_back(next_segment_index);
return true;
}
// Print outputs to log
void PrintOutputs(const std::vector<paddle::PaddleTensor> &outputs) {
LOG(INFO) << "example_id\tcontradiction\tentailment\tneutral";
for (size_t i = 0; i < outputs.front().data.length() / sizeof(float); i += 3) {
LOG(INFO) << (i / 3) << "\t"
<< static_cast<float *>(outputs.front().data.data())[i] << "\t"
<< static_cast<float *>(outputs.front().data.data())[i + 1]
<< "\t"
<< static_cast<float *>(outputs.front().data.data())[i + 2];
}
}
bool LoadInputData(std::vector<std::vector<paddle::PaddleTensor>> *inputs) {
if (FLAGS_data.empty()) {
LOG(ERROR) << "please set input data path";
return false;
}
std::ifstream fin(FLAGS_data);
std::string line;
int lineno = 0;
while (std::getline(fin, line)) {
std::vector<paddle::PaddleTensor> feed_data;
if (!ParseLine(line, &feed_data)) {
LOG(ERROR) << "Parse line[" << lineno << "] error!";
} else {
inputs->push_back(std::move(feed_data));
}
}
return true;
}
// Bert inference demo
// Options:
// --model_dir: bert model file directory
// --data: data path
// --repeat: repeat num
int main(int argc, char *argv[]) {
google::InitGoogleLogging(*argv);
gflags::ParseCommandLineFlags(&argc, &argv, true);
if (FLAGS_model_dir.empty()) {
LOG(ERROR) << "please set model dir";
return -1;
}
paddle::NativeConfig config;
config.model_dir = FLAGS_model_dir;
config.use_gpu = false;
auto predictor = CreatePaddlePredictor(config);
std::vector<std::vector<paddle::PaddleTensor>> inputs;
if (!LoadInputData(&inputs)) {
LOG(ERROR) << "load input data error!";
return -1;
}
std::vector<paddle::PaddleTensor> fetch;
int total_time{0};
// auto predict_timer = []()
int num_samples{0};
for (int i = 0; i < FLAGS_repeat; i++) {
for (auto feed : inputs) {
auto start = std::chrono::system_clock::now();
predictor->Run(feed, &fetch);
auto end = std::chrono::system_clock::now();
if (!fetch.empty()) {
total_time +=
std::chrono::duration_cast<std::chrono::milliseconds>(end - start)
.count();
num_samples += fetch.front().data.length() / 3;
}
}
}
auto per_sample_ms =
static_cast<float>(total_time) / num_samples;
LOG(INFO) << "Run " << num_samples
<< " samples, average latency: " << per_sample_ms
<< "ms per sample.";
return 0;
}