forked from PaddlePaddle/ERNIE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
412 lines (352 loc) · 16.5 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT pretraining."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import time
import argparse
import numpy as np
import multiprocessing
import paddle
import paddle.fluid as fluid
from reader.pretraining import DataReader
from model.bert import BertModel, BertConfig
from optimization import optimization
from utils.args import ArgumentGroup, print_arguments
from utils.init import init_checkpoint, init_pretraining_params
# yapf: disable
parser = argparse.ArgumentParser(__doc__)
model_g = ArgumentGroup(parser, "model", "model configuration and paths.")
model_g.add_arg("bert_config_path", str, "./config/bert_config.json", "Path to the json file for bert model config.")
model_g.add_arg("init_checkpoint", str, None, "Init checkpoint to resume training from.")
model_g.add_arg("checkpoints", str, "checkpoints", "Path to save checkpoints.")
model_g.add_arg("weight_sharing", bool, True, "If set, share weights between word embedding and masked lm.")
model_g.add_arg("generate_neg_sample", bool, True, "If set, randomly generate negtive samples by positive samples.")
train_g = ArgumentGroup(parser, "training", "training options.")
train_g.add_arg("epoch", int, 100, "Number of epoches for training.")
train_g.add_arg("learning_rate", float, 0.0001, "Learning rate used to train with warmup.")
train_g.add_arg("lr_scheduler", str, "linear_warmup_decay",
"scheduler of learning rate.", choices=['linear_warmup_decay', 'noam_decay'])
train_g.add_arg("weight_decay", float, 0.01, "Weight decay rate for L2 regularizer.")
train_g.add_arg("num_train_steps", int, 1000000, "Total steps to perform pretraining.")
train_g.add_arg("warmup_steps", int, 4000, "Total steps to perform warmup when pretraining.")
train_g.add_arg("save_steps", int, 10000, "The steps interval to save checkpoints.")
train_g.add_arg("validation_steps", int, 1000, "The steps interval to evaluate model performance.")
train_g.add_arg("use_fp16", bool, False, "Whether to use fp16 mixed precision training.")
train_g.add_arg("loss_scaling", float, 1.0,
"Loss scaling factor for mixed precision training, only valid when use_fp16 is enabled.")
log_g = ArgumentGroup(parser, "logging", "logging related.")
log_g.add_arg("skip_steps", int, 10, "The steps interval to print loss.")
log_g.add_arg("verbose", bool, False, "Whether to output verbose log.")
data_g = ArgumentGroup(parser, "data", "Data paths, vocab paths and data processing options")
data_g.add_arg("data_dir", str, "./data/train/", "Path to training data.")
data_g.add_arg("validation_set_dir", str, "./data/validation/", "Path to validation data.")
data_g.add_arg("test_set_dir", str, None, "Path to test data.")
data_g.add_arg("vocab_path", str, "./config/vocab.txt", "Vocabulary path.")
data_g.add_arg("max_seq_len", int, 512, "Tokens' number of the longest seqence allowed.")
data_g.add_arg("batch_size", int, 8192,
"The total number of examples in one batch for training, see also --in_tokens.")
data_g.add_arg("in_tokens", bool, True,
"If set, the batch size will be the maximum number of tokens in one batch. "
"Otherwise, it will be the maximum number of examples in one batch.")
run_type_g = ArgumentGroup(parser, "run_type", "running type options.")
run_type_g.add_arg("is_distributed", bool, False, "If set, then start distributed training.")
run_type_g.add_arg("use_cuda", bool, True, "If set, use GPU for training.")
run_type_g.add_arg("use_fast_executor", bool, False, "If set, use fast parallel executor (in experiment).")
run_type_g.add_arg("do_test", bool, False, "Whether to perform evaluation on test data set.")
args = parser.parse_args()
# yapf: enable.
def create_model(pyreader_name, bert_config):
pyreader = fluid.layers.py_reader(
capacity=70,
shapes=[[-1, args.max_seq_len, 1], [-1, args.max_seq_len, 1],
[-1, args.max_seq_len, 1],
[-1, args.max_seq_len, args.max_seq_len], [-1, 1], [-1, 1],
[-1, 1], [-1, 1]],
dtypes=[
'int64', 'int64', 'int64', 'float', 'int64', 'int64', 'int64',
'int64'
],
lod_levels=[0, 0, 0, 0, 0, 0, 0, 0],
name=pyreader_name,
use_double_buffer=True)
(src_ids, pos_ids, sent_ids, self_attn_mask, mask_label, mask_pos, labels,
next_sent_index) = fluid.layers.read_file(pyreader)
bert = BertModel(
src_ids=src_ids,
position_ids=pos_ids,
sentence_ids=sent_ids,
self_attn_mask=self_attn_mask,
config=bert_config,
weight_sharing=args.weight_sharing,
use_fp16=args.use_fp16)
next_sent_acc, mask_lm_loss, total_loss = bert.get_pretraining_output(
mask_label, mask_pos, labels, next_sent_index)
if args.use_fp16 and args.loss_scaling > 1.0:
total_loss *= args.loss_scaling
return pyreader, next_sent_acc, mask_lm_loss, total_loss
def predict_wrapper(args,
exe,
bert_config,
test_prog=None,
pyreader=None,
fetch_list=None):
# Context to do validation.
data_path = args.test_set_dir if args.do_test else args.validation_set_dir
data_reader = DataReader(
data_path,
vocab_path=args.vocab_path,
batch_size=args.batch_size,
in_tokens=args.in_tokens,
voc_size=bert_config['vocab_size'],
shuffle_files=False,
epoch=1,
max_seq_len=args.max_seq_len,
is_test=True)
if args.do_test:
assert args.init_checkpoint is not None, "[FATAL] Please use --init_checkpoint '/path/to/checkpoints' \
to specify you pretrained model checkpoints"
init_pretraining_params(exe, args.init_checkpoint, test_prog)
def predict(exe=exe, pyreader=pyreader):
pyreader.decorate_tensor_provider(data_reader.data_generator())
pyreader.start()
cost = 0
lm_cost = 0
acc = 0
steps = 0
time_begin = time.time()
while True:
try:
each_next_acc, each_mask_lm_cost, each_total_cost = exe.run(
fetch_list=fetch_list, program=test_prog)
acc += each_next_acc
lm_cost += each_mask_lm_cost
cost += each_total_cost
steps += 1
if args.do_test and steps % args.skip_steps == 0:
print("[test_set] steps: %d" % steps)
except fluid.core.EOFException:
pyreader.reset()
break
used_time = time.time() - time_begin
return cost, lm_cost, acc, steps, (args.skip_steps / used_time)
return predict
def test(args):
bert_config = BertConfig(args.bert_config_path)
bert_config.print_config()
test_prog = fluid.Program()
test_startup = fluid.Program()
with fluid.program_guard(test_prog, test_startup):
with fluid.unique_name.guard():
test_pyreader, next_sent_acc, mask_lm_loss, total_loss = create_model(
pyreader_name='test_reader', bert_config=bert_config)
test_prog = test_prog.clone(for_test=True)
place = fluid.CUDAPlace(0) if args.use_cuda == True else fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(test_startup)
predict = predict_wrapper(
args,
exe,
bert_config,
test_prog=test_prog,
pyreader=test_pyreader,
fetch_list=[next_sent_acc.name, mask_lm_loss.name, total_loss.name])
print("test begin")
loss, lm_loss, acc, steps, speed = predict()
print(
"[test_set] loss: %f, global ppl: %f, next_sent_acc: %f, speed: %f steps/s"
% (np.mean(np.array(loss) / steps),
np.exp(np.mean(np.array(lm_loss) / steps)),
np.mean(np.array(acc) / steps), speed))
def train(args):
print("pretraining start")
bert_config = BertConfig(args.bert_config_path)
bert_config.print_config()
train_program = fluid.Program()
startup_prog = fluid.Program()
with fluid.program_guard(train_program, startup_prog):
with fluid.unique_name.guard():
train_pyreader, next_sent_acc, mask_lm_loss, total_loss = create_model(
pyreader_name='train_reader', bert_config=bert_config)
scheduled_lr = optimization(
loss=total_loss,
warmup_steps=args.warmup_steps,
num_train_steps=args.num_train_steps,
learning_rate=args.learning_rate,
train_program=train_program,
startup_prog=startup_prog,
weight_decay=args.weight_decay,
scheduler=args.lr_scheduler,
use_fp16=args.use_fp16,
loss_scaling=args.loss_scaling)
fluid.memory_optimize(
input_program=train_program,
skip_opt_set=[
next_sent_acc.name, mask_lm_loss.name, total_loss.name
])
test_prog = fluid.Program()
with fluid.program_guard(test_prog, startup_prog):
with fluid.unique_name.guard():
test_pyreader, next_sent_acc, mask_lm_loss, total_loss = create_model(
pyreader_name='test_reader', bert_config=bert_config)
test_prog = test_prog.clone(for_test=True)
if args.use_cuda:
place = fluid.CUDAPlace(0)
dev_count = fluid.core.get_cuda_device_count()
else:
place = fluid.CPUPlace()
dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
print("Device count %d" % dev_count)
if args.verbose:
if args.in_tokens:
lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
program=train_program,
batch_size=args.batch_size // args.max_seq_len)
else:
lower_mem, upper_mem, unit = fluid.contrib.memory_usage(
program=train_program, batch_size=args.batch_size)
print("Theoretical memory usage in training: %.3f - %.3f %s" %
(lower_mem, upper_mem, unit))
nccl2_num_trainers = 1
nccl2_trainer_id = 0
print("args.is_distributed:", args.is_distributed)
if args.is_distributed:
worker_endpoints_env = os.getenv("worker_endpoints")
worker_endpoints = worker_endpoints_env.split(",")
trainers_num = len(worker_endpoints)
current_endpoint = os.getenv("current_endpoint")
trainer_id = worker_endpoints.index(current_endpoint)
if trainer_id == 0:
print("train_id == 0, sleep 60s")
time.sleep(60)
print("worker_endpoints:{} trainers_num:{} current_endpoint:{} \
trainer_id:{}"
.format(worker_endpoints, trainers_num,
current_endpoint, trainer_id))
# prepare nccl2 env.
config = fluid.DistributeTranspilerConfig()
config.mode = "nccl2"
t = fluid.DistributeTranspiler(config=config)
t.transpile(
trainer_id,
trainers=worker_endpoints_env,
current_endpoint=current_endpoint,
program=train_program,
startup_program=startup_prog)
nccl2_num_trainers = trainers_num
nccl2_trainer_id = trainer_id
exe = fluid.Executor(place)
exe.run(startup_prog)
if args.init_checkpoint and args.init_checkpoint != "":
init_checkpoint(exe, args.init_checkpoint, train_program, args.use_fp16)
data_reader = DataReader(
data_dir=args.data_dir,
batch_size=args.batch_size,
in_tokens=args.in_tokens,
vocab_path=args.vocab_path,
voc_size=bert_config['vocab_size'],
epoch=args.epoch,
max_seq_len=args.max_seq_len,
generate_neg_sample=args.generate_neg_sample)
exec_strategy = fluid.ExecutionStrategy()
if args.use_fast_executor:
exec_strategy.use_experimental_executor = True
exec_strategy.num_threads = dev_count
build_strategy = fluid.BuildStrategy()
build_strategy.remove_unnecessary_lock = False
train_exe = fluid.ParallelExecutor(
use_cuda=args.use_cuda,
loss_name=total_loss.name,
build_strategy=build_strategy,
exec_strategy=exec_strategy,
main_program=train_program,
num_trainers=nccl2_num_trainers,
trainer_id=nccl2_trainer_id)
if args.validation_set_dir and args.validation_set_dir != "":
predict = predict_wrapper(
args,
exe,
bert_config,
test_prog=test_prog,
pyreader=test_pyreader,
fetch_list=[
next_sent_acc.name, mask_lm_loss.name, total_loss.name
])
train_pyreader.decorate_tensor_provider(data_reader.data_generator())
train_pyreader.start()
steps = 0
cost = []
lm_cost = []
acc = []
time_begin = time.time()
while steps < args.num_train_steps:
try:
steps += nccl2_num_trainers
skip_steps = args.skip_steps * nccl2_num_trainers
if nccl2_trainer_id != 0:
train_exe.run(fetch_list=[])
continue
if steps % skip_steps != 0:
train_exe.run(fetch_list=[])
else:
each_next_acc, each_mask_lm_cost, each_total_cost, np_lr = train_exe.run(
fetch_list=[
next_sent_acc.name, mask_lm_loss.name, total_loss.name,
scheduled_lr.name
])
acc.extend(each_next_acc)
lm_cost.extend(each_mask_lm_cost)
cost.extend(each_total_cost)
print("feed_queue size", train_pyreader.queue.size())
time_end = time.time()
used_time = time_end - time_begin
epoch, current_file_index, total_file, current_file = data_reader.get_progress(
)
print("current learning_rate:%f" % np_lr[0])
print("epoch: %d, progress: %d/%d, step: %d, loss: %f, "
"ppl: %f, next_sent_acc: %f, speed: %f steps/s, file: %s"
% (epoch, current_file_index, total_file, steps,
np.mean(np.array(cost)),
np.mean(np.exp(np.array(lm_cost))),
np.mean(np.array(acc)), skip_steps / used_time,
current_file))
cost = []
lm_cost = []
acc = []
time_begin = time.time()
if steps % args.save_steps == 0:
save_path = os.path.join(args.checkpoints, "step_" + str(steps))
fluid.io.save_persistables(exe, save_path, train_program)
if args.validation_set_dir and steps % args.validation_steps == 0:
vali_cost, vali_lm_cost, vali_acc, vali_steps, vali_speed = predict(
)
print("[validation_set] epoch: %d, step: %d, "
"loss: %f, global ppl: %f, batch-averged ppl: %f, "
"next_sent_acc: %f, speed: %f steps/s" %
(epoch, steps,
np.mean(np.array(vali_cost) / vali_steps),
np.exp(np.mean(np.array(vali_lm_cost) / vali_steps)),
np.mean(np.exp(np.array(vali_lm_cost) / vali_steps)),
np.mean(np.array(vali_acc) / vali_steps), vali_speed))
except fluid.core.EOFException:
train_pyreader.reset()
break
if __name__ == '__main__':
print_arguments(args)
if args.do_test:
test(args)
else:
train(args)