forked from PaddlePaddle/ERNIE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpretrain_args.py
68 lines (60 loc) · 4.3 KB
/
pretrain_args.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import time
import argparse
from utils.args import ArgumentGroup, print_arguments
# yapf: disable
parser = argparse.ArgumentParser(__doc__)
model_g = ArgumentGroup(parser, "model", "model configuration and paths.")
model_g.add_arg("ernie_config_path", str, "./config/ernie_config.json", "Path to the json file for ernie model config.")
model_g.add_arg("init_checkpoint", str, None, "Init checkpoint to resume training from.")
model_g.add_arg("checkpoints", str, "checkpoints", "Path to save checkpoints.")
model_g.add_arg("weight_sharing", bool, True, "If set, share weights between word embedding and masked lm.")
model_g.add_arg("generate_neg_sample", bool, False, "If set, randomly generate negtive samples by positive samples.")
train_g = ArgumentGroup(parser, "training", "training options.")
train_g.add_arg("epoch", int, 100, "Number of epoches for training.")
train_g.add_arg("learning_rate", float, 0.0001, "Learning rate used to train with warmup.")
train_g.add_arg("lr_scheduler", str, "linear_warmup_decay",
"scheduler of learning rate.", choices=['linear_warmup_decay', 'noam_decay'])
train_g.add_arg("weight_decay", float, 0.01, "Weight decay rate for L2 regularizer.")
train_g.add_arg("num_train_steps", int, 1000000, "Total steps to perform pretraining.")
train_g.add_arg("warmup_steps", int, 5000, "Total steps to perform warmup when pretraining.")
train_g.add_arg("save_steps", int, 10000, "The steps interval to save checkpoints.")
train_g.add_arg("validation_steps", int, 1000, "The steps interval to evaluate model performance.")
train_g.add_arg("use_fp16", bool, False, "Whether to use fp16 mixed precision training.")
train_g.add_arg("loss_scaling", float, 1.0,
"Loss scaling factor for mixed precision training, only valid when use_fp16 is enabled.")
log_g = ArgumentGroup(parser, "logging", "logging related.")
log_g.add_arg("skip_steps", int, 10, "The steps interval to print loss.")
log_g.add_arg("verbose", bool, False, "Whether to output verbose log.")
data_g = ArgumentGroup(parser, "data", "Data paths, vocab paths and data processing options")
data_g.add_arg("train_filelist", str, "", "Path to training filelist.")
data_g.add_arg("valid_filelist", str, "", "Path to valid filelist.")
data_g.add_arg("test_filelist", str, "", "Path to test filelist.")
data_g.add_arg("vocab_path", str, "./config/vocab.txt", "Vocabulary path.")
data_g.add_arg("max_seq_len", int, 512, "Number of words of the longest seqence.")
data_g.add_arg("batch_size", int, 16, "Total examples' number in batch for training. see also --in_tokens.")
data_g.add_arg("in_tokens", bool, False,
"If set, the batch size will be the maximum number of tokens in one batch. "
"Otherwise, it will be the maximum number of examples in one batch.")
run_type_g = ArgumentGroup(parser, "run_type", "running type options.")
run_type_g.add_arg("is_distributed", bool, False, "If set, then start distributed training.")
run_type_g.add_arg("use_cuda", bool, True, "If set, use GPU for training.")
run_type_g.add_arg("use_fast_executor", bool, False, "If set, use fast parallel executor (in experiment).")
run_type_g.add_arg("do_test", bool, False, "Whether to perform evaluation on test data set.")
# yapf: enable