Download the data (calib, image_2, label_2, velodyne) from Kitti Object Detection Dataset and place it in your data folder at data/kitti
.
Note that in order to get the similar mAP compariable to OpenPCDet, we shall use pruned pointcloud in camera FOV.
The folder structure is as following:
data
kitti
pcdet
000000.txt
pred
000000.txt
pred_velo
000000.txt
testing
calib
000000.txt
image_2
000000.png
label_2
000000.txt
velodyne
000000.bin
pred
000000.txt
training
calib
000000.txt
image_2
000000.png
label_2
000000.txt
velodyne
000000.bin
pred
000000.txt
$ sh tool/evaluate_kitti_val.sh
Car AP(Average Precision)@0.70, 0.70, 0.70:
bbox AP:90.78, 89.80, 88.74
bev AP:89.48, 86.99, 83.86
3d AP:86.28, 77.08, 73.87
aos AP:90.77, 89.60, 88.42
Car AP(Average Precision)@0.70, 0.50, 0.50:
bbox AP:90.78, 89.80, 88.74
bev AP:90.78, 90.15, 89.42
3d AP:90.78, 90.02, 89.19
aos AP:90.77, 89.60, 88.42
Pedestrian AP(Average Precision)@0.50, 0.50, 0.50:
bbox AP:65.66, 61.90, 58.44
bev AP:61.02, 56.29, 52.60
3d AP:56.49, 51.68, 47.55
aos AP:47.03, 44.53, 41.78
Pedestrian AP(Average Precision)@0.50, 0.25, 0.25:
bbox AP:65.66, 61.90, 58.44
bev AP:72.18, 69.56, 66.12
3d AP:72.11, 68.94, 65.84
aos AP:47.03, 44.53, 41.78
Cyclist AP(Average Precision)@0.50, 0.50, 0.50:
bbox AP:85.04, 72.64, 68.80
bev AP:82.38, 65.88, 61.53
3d AP:80.35, 62.56, 59.19
aos AP:84.50, 70.79, 66.93
Cyclist AP(Average Precision)@0.50, 0.25, 0.25:
bbox AP:85.04, 72.64, 68.80
bev AP:86.15, 70.29, 66.71
3d AP:86.15, 70.29, 66.71
aos AP:84.50, 70.79, 66.93