-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paththeta_range_search.py
119 lines (92 loc) · 3.04 KB
/
theta_range_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import numpy as np
import matplotlib.pyplot as plt
from sys import exit
def safe_ln(x, minval=0.00001):
return np.log(x.clip(min=minval))
def black_box(n_samples, theta=1.0, phi=0.2, random_state=None):
"""
Black box for which we know the distribution follows normal
with mean theta and std phi.
"""
phi = 2 + np.cos(phi)
rng = np.random.RandomState(random_state)
return phi * rng.randn(n_samples) + theta
def log_likelihood(X, theta, phi):
"""
Gives likelihood of P(X | theta, phi)
Parameters
----------
X - shape(n_samples,)
Samples drawn from the black box.
theta - float
Parameter value.
phi - float
Experimental setting.
Returns
-------
likelihood - float
\prod_{i=1}^n P(X_i | theta, phi)
"""
# Generate samples to estimate the empirical distribution.
samples = black_box(10**6, theta, phi)
n, bins = np.histogram(samples, 1000, density=True)
bin_indices = np.searchsorted(bins, X) - 1
# Clip values outside the interval.
bin_indices[bin_indices == -1] = 0
bin_indices[bin_indices == len(n)] = len(n) - 1
n_counts = n[bin_indices]
P_X_given_theta = n_counts / np.sum(n_counts)
return np.sum(safe_ln(P_X_given_theta))
def compute_log_posterior(thetas, phi, X, log_prior, run_iter="init", phi_iter="init", exp_iter="init"):
"""
Compute P(theta | phi, X) = P(theta | phi) * P(X | theta, phi)
Parameters
----------
thetas - shape=(n_thetas,)
List of permissible values of thetas.
phi - float
Experimental setting.
X - shape=(n_samples,)
Samples drawn from the black box.
log_prior - float
log(P(theta))
Returns
-------
log_posterior - shape=(n_thetas,)
Log posterior.
"""
log_posterior = np.empty_like(thetas)
log_likelihoods = np.empty_like(thetas)
for i, theta in enumerate(thetas):
# Find log(\prod_{i=1}^n P(X_i | t, phi)
log_like = log_likelihood(X, theta, phi)
log_likelihoods[i] = log_like
#print log_like
log_posterior = log_likelihoods + log_prior
max_log_likelihood = max(log_likelihoods)
log_likelihoods -= max_log_likelihood
likelihood = np.exp(log_likelihoods)
sum_likelihood = np.sum(likelihood)
likelihood = likelihood / np.sum(likelihood)
max_log_prior = max(log_prior)
log_prior -= max_log_prior
prior = np.exp(log_prior)
prior = prior / np.sum(prior)
product = prior * likelihood
posterior = product / np.sum(product)
log_posterior = safe_ln(posterior)
return log_posterior
phi_real = 0.1
theta_true = 1.0
real_data = black_box(100, theta_true, phi_real, 1)
semiInterval=18
numberOfSteps = 100
minTheta = -semiInterval
maxTheta = semiInterval
thetas = np.linspace(minTheta, maxTheta, numberOfSteps)
log_prior = safe_ln(np.ones_like(thetas) / thetas.shape[0])
log_posterior = compute_log_posterior(thetas, phi_real, real_data, log_prior)
posterior = np.exp(log_posterior)
print posterior
plt.plot(thetas,posterior)
plt.show()