-
-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathAlgebraic_integration_from_Ludovic_Sacchelli_s_PhD_thesis.py
538 lines (244 loc) · 9.1 KB
/
Algebraic_integration_from_Ludovic_Sacchelli_s_PhD_thesis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
# coding: utf-8
# # Table of Contents
# <p><div class="lev1 toc-item"><a href="#Presentation" data-toc-modified-id="Presentation-1"><span class="toc-item-num">1 </span>Presentation</a></div><div class="lev1 toc-item"><a href="#Computations" data-toc-modified-id="Computations-2"><span class="toc-item-num">2 </span>Computations</a></div><div class="lev2 toc-item"><a href="#Conclusion" data-toc-modified-id="Conclusion-21"><span class="toc-item-num">2.1 </span>Conclusion</a></div>
# # Presentation
#
# I want to reproduce the symbolic (algebraic) computations done in §5.A of [L.S.'s PhD thesis](http://www.cmap.polytechnique.fr/~sacchelli/).
# I want to only use a free and open-source software, so I'm using [Python 3](https://docs.python.org/3) with the [Sympy](https://sympy.org) module.
# In[1]:
get_ipython().run_line_magic('load_ext', 'watermark')
get_ipython().run_line_magic('watermark', '-v -m -p sympy -g')
# In[2]:
from sympy import *
# In[3]:
init_printing(use_latex='mathjax')
# Just a small introduction to SymPy: it works by using Python expressions on formal variables.
# First, we define variables, and then we can solve linear equations for example:
# In[4]:
var("x y z")
# In[5]:
solve(x + 2 + 19)
# In[6]:
solve(x + 2*y + 19)
# # Computations
# We start by defining $b_1 > 0$ and the other variables.
# In[7]:
b1 = symbols("b1", positive=True)
# We need a lot of variables.
# In[8]:
var("h1 h2 h3 h4 k131 k132 k141 k142 k231 k232 k241 k242 rest1 rest2 t s a b");
# Then we can start to follow Ludovic's notebook and define the first expressions.
# In[13]:
J = Matrix([[0, -b1], [b1, 0]])
J
# In[14]:
h0 = Matrix([h1, h2])
h0
# $\hat{h}$ is defined as $t \mapsto \exp(t J) . h_0$ and $\hat{x}$ as $t \mapsto \int_{s=0}^{s=t} \hat{h}(s) \mathrm{d}s$.
# In[15]:
hhat = Lambda(t, (t * J).exp() * h0)
hhat
# In[16]:
xhat = Lambda(t, integrate(hhat(s), (s, 0, t)))
xhat
# $\hat{z}$ is slightly more complex:
# In[20]:
integrand = simplify(b1 * (hhat(s)[0] * xhat(s)[1] - hhat(s)[1] * xhat(s)[0] )/2)
integrand
# In[21]:
zhat = Lambda(t, integrate(integrand, (s, 0, t)))
zhat
# As we asked $b_1 > 0$, this won't get too complicated:
# In[22]:
factor(zhat(t))
# Two more expressions:
# In[23]:
exp21 = (3 * a * h1**2 + a * h2**2 + 2 * b * h1 * h2 + k131 * h1 * h3 + k141 * h1 * h4
+ k231 * h2 * h3 + k241 * h2 * h4 + rest1(h3, h4))
# In[24]:
exp22 = (b * h1**2 + 3 * b * h2**2 + 2 * a * h1 * h2 + k132 * h1 * h3 + k142 * h1 * h4
+ k232 * h2 * h3 + k242 * h2 * h4 + rest2(h3, h4))
# Both terms `rest1` and `rest2` are not important, they only depend on $h_3$ and $h_4$ and will vanish as soon as we only differentiate with respect to $h_1$ and $h_2$.
# So far so good. Next cell:
# In[27]:
C10 = 2 * (pi / b1) * Matrix([h1, h2])
C10
# In[29]:
A0 = simplify(Matrix([
[diff(exp21, h1), diff(exp21, h2)],
[diff(exp22, h1), diff(exp22, h2)],
]))
A0
# `rest1` and `rest2` already vanished.
# In[32]:
jacobian = simplify(Matrix([
[diff(exp21, h1), diff(exp21, h2), C10[0]],
[diff(exp22, h1), diff(exp22, h2), C10[1]],
[diff(zhat(2 * pi / b1), h1), diff(zhat(2 * pi / b1), h2), 0],
]))
jacobian
# We need one more variable to solve an equation.
# In[33]:
var('dt')
# In[34]:
tc = factor(solve(Equality((jacobian + Matrix([[dt,0,0], [0,dt,0], [0,0,0]])).det(), 0), dt)[0])
# In[35]:
tc
# I can compare by copying the result from the document:
# In[36]:
tc2 = (-1 / (h1**2 + h2**2)) * (
2 * a * h1**3
+ 6 * a * h1**2 * h2
- 4 * b * h1**2 * h2
+ 2 * a * h1 * h2**2
+ 2 * b * h2**3
+ h2**2 * h3 * k131
- h1 * h2 * h3 * k132
+ h2**2 * h4 * k141
- h1 * h2 * h4 * k142
- h1 * h2 * h3 * k231
+ h1**2 * h3 * k232
- h1 * h2 * h4 * k241
+ h1**2 * h4 * k242 )
# Drat, they are not equal! We might have a mistake somewhere, even though I just CAN'T find it!
# In[37]:
simplify(tc - tc2)
# Let's use the one from Ludovic's notebook.
# In[38]:
tc = tc2
# Next cell.
# In[39]:
A12 = simplify(A0 + Matrix([[tc, 0], [0, tc]]))
# In[40]:
var("u1 u2 u5")
# In[41]:
Psi = Lambda((u1, u2, u5), simplify(
u5 * Matrix(A12.dot(Matrix([h1, h2]))).dot(Matrix([h2, -h1])) + 2 * pi / b1 * ( h1**2 + h2**2) * (h1 * u2 - h2 * u1)
))
# In[43]:
my_psi = factor(simplify(Psi(u1, u2, u5)))
my_psi
# Let's compare with the value from Ludovic's notebook:
# In[44]:
his_psi = (1 / b1) * (
2 * h1**3 * (pi * u2 - b * b1 * u5 ) -
h1**2 * (2 * h2 * pi * u1 - 2 * a * b1 * h2 * u5 + b1 * h3 * k132 * u5 +
b1 * h4 * k142 * u5 ) +
h2**2 * ( -2 * h2 * pi * u1 + 2 * a * b1 * h2 * u5 + b1 * h3 * k231 * u5 +
b1 * h4 * k241 * u5 ) +
h1 * h2 * (b1 * (h3 * k131 + h4 * k141 - h3 * k232 - h4 * k242) * u5 +
2 * h2 * (pi * u2 - b * b1 * u5))
)
# In[45]:
simplify(my_psi - his_psi)
# Ok, we have the same result so far! Great!
# Next cell.
# In[46]:
var("nu0")
# Here again, Sympy fails to solve the equation. It can solve on both lines separately, but cannot find a solution that satisfies both lines.
# In[47]:
s1 = solve(Eq((Matrix(A12.dot(Matrix([-h2, h1]))) + nu0 * C10)[0]), nu0)[0]
# In[48]:
s2 = solve(Eq((Matrix(A12.dot(Matrix([-h2, h1]))) + nu0 * C10)[1]), nu0)[0]
# In[49]:
solve(Eq(s1, s2))
# It is not possible to impose these constraints. And Sympy fails to solve both equation simultaneously:
# In[50]:
solve(Eq(Matrix(A12.dot(Matrix([-h2, h1]))) + nu0 * C10, Matrix([0,0])), nu0)
# In[51]:
nu = simplify(solve(Eq(Matrix(A12.dot(Matrix([-h2, h1]))) + nu0 * C10, Matrix([0,0])), nu0))
if nu == []:
nu = var("nu")
# We can continue by using a formal variable for $\nu$ (`nu`).
# In[52]:
v = Matrix([nu, -h2, h1])
# In[53]:
v
# Let's finish.
# In[54]:
var("eta f F");
# In[55]:
d = [
lambda F: -eta**2 * diff(F, eta) + eta * t * diff(F, t),
lambda F: diff(F, h1),
lambda F: diff(F, h2)
]
# In[56]:
d
# Next cell.
# In[57]:
var("i1 i2 g1 g2 dt1 dt2");
# In[59]:
g = eta * g1(t + eta * dt1, h1, h2) + eta**2 * g2(t, h1, h2)
g
# We have a sum to compute:
# In[60]:
res = 0
for i1 in range(0, 3):
for i2 in range(0, 3):
res += v[i1] * v[i2] * d[i1](d[i2](g))
# In[61]:
simplify(res)
# Then a double derivative
# In[62]:
d2f = simplify((diff(res, eta, eta) / 2).subs(eta, 0))
# Now, we should replace $g_1$ and $g_2$ with the following expression:
# In[63]:
g1 = Lambda((t, h1, h2), simplify(Matrix(list(xhat(t)) + [0])))
# In[64]:
g1(t, h1, h2)
# In[65]:
g2 = Lambda((t, h1, h2), simplify(Matrix([exp21, exp22] + [zhat(t)])))
# In[66]:
g2(t, h1, h2)
# Let's see if the replacement is possible:
# In[67]:
simplify(d2f)
# In[68]:
simplify(d2f.subs({
g1: Lambda((t, h1, h2), simplify(Matrix(list(xhat(t)) + [0]))),
g2: Lambda((t, h1, h2), simplify(Matrix([exp21, exp22] +[zhat(t)]))),
}))
# OK. This failed. But we can copy and paste this and the replacement of $g_1$ and $g_2$ will be effective:
# In[69]:
d2f = (
h1**2*(dt1*diff(g1(t, h1, h2), t, h2, h2)
+ diff(g2(t, h1, h2), h2, h2))
- 2*h1*h2*(dt1*diff(g1(t, h1, h2), t, h1, h2)
+ diff(g2(t, h1, h2), h1, h2))
+ 2*h1*nu*(t*diff(g1(t, h1, h2), t, h2)
- diff(g1(t, h1, h2), h2))
+ h2**2*(dt1*diff(g1(t, h1, h2), t, h1, h1)
+ diff(g2(t, h1, h2), h1, h1))
- 2*h2*nu*(t*diff(g1(t, h1, h2), t, h1)
- diff(g1(t, h1, h2), h1))
)
# And the same for $t$.
# In[70]:
t = 2 * pi / b1
# In[71]:
d2f
# The replacement does not work apparently, so let's do it manually:
# In[72]:
d2f = Matrix([
[ 2*a*h1**2 + 6*a*h2**2 - 4*b*h1*h2 + 2*h1*nu*(I*t*(-(exp(2*I*b1*t) - 2*exp(I*b1*t) + 1)*exp(-I*b1*t)/2 + exp(I*b1*t) - 1) - (exp(2*I*b1*t) - 2*exp(I*b1*t) + 1)*exp(-I*b1*t)/(2*b1)) - 2*h2*nu*(t*(-(exp(2*I*b1*t) - 1)*exp(-I*b1*t)/2 + exp(I*b1*t)) - (-I*exp(2*I*b1*t) + I)*exp(-I*b1*t)/(2*b1))],
[-4*a*h1*h2 + 6*b*h1**2 + 2*b*h2**2 + 2*h1*nu*(t*(-(exp(2*I*b1*t) - 1)*exp(-I*b1*t)/2 + exp(I*b1*t)) - (-I*exp(2*I*b1*t) + I)*exp(-I*b1*t)/(2*b1)) - 2*h2*nu*(I*t*((exp(2*I*b1*t) - 2*exp(I*b1*t) + 1)*exp(-I*b1*t)/2 - exp(I*b1*t) + 1) - (-exp(2*I*b1*t) + 2*exp(I*b1*t) - 1)*exp(-I*b1*t)/(2*b1))],
[ -h1**2*(2*b1*t*exp(I*b1*t) + I*exp(2*I*b1*t) - I)*exp(-I*b1*t)/(2*b1) - h2**2*(2*b1*t*exp(I*b1*t) + I*exp(2*I*b1*t) - I)*exp(-I*b1*t)/(2*b1)]])
# In[73]:
d2Exp = simplify(d2f)
# It still works well. And we removed the complex exponential, this result is purely real now!
# In[74]:
d2Exp
# In[75]:
Psi
# So now we can call $\Psi$ on the three components of this `d2Exp` :
# In[76]:
Psi(d2Exp[0], d2Exp[1], d2Exp[2])
# In[77]:
simplify(expand(Psi(d2Exp[0], d2Exp[1], d2Exp[2]) / (1 / (1/b1 * 2 * (h1**2 + h2**2) * pi))))
# We don't have the value for `nu` !
# ## Conclusion
# We do NOT obtain the same result as the document. Everything failed at the end.
#
# Too bad, but still, it was interesting. I guess?
# > See [here](https://github.com/Naereen/notebooks) for other notebooks I wrote.