-
-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathExponential_Integral_Python.py
390 lines (208 loc) · 9.8 KB
/
Exponential_Integral_Python.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
# coding: utf-8
# # Table of Contents
# <p><div class="lev1 toc-item"><a href="#Python-implementation-of-the-Exponential-Integral-function" data-toc-modified-id="Python-implementation-of-the-Exponential-Integral-function-1"><span class="toc-item-num">1 </span>Python implementation of <a href="https://en.wikipedia.org/wiki/Exponential_integral" target="_blank">the Exponential Integral</a> function</a></div><div class="lev2 toc-item"><a href="#Two-implementations" data-toc-modified-id="Two-implementations-11"><span class="toc-item-num">1.1 </span>Two implementations</a></div><div class="lev2 toc-item"><a href="#Checking-the-two-versions" data-toc-modified-id="Checking-the-two-versions-12"><span class="toc-item-num">1.2 </span>Checking the two versions</a></div><div class="lev2 toc-item"><a href="#Comparison-with-scipy.special.expi" data-toc-modified-id="Comparison-with-scipy.special.expi-13"><span class="toc-item-num">1.3 </span>Comparison with <a href="https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.expi.html#scipy.special.expi" target="_blank"><code>scipy.special.expi</code></a></a></div><div class="lev2 toc-item"><a href="#Special-values" data-toc-modified-id="Special-values-14"><span class="toc-item-num">1.4 </span>Special values</a></div><div class="lev2 toc-item"><a href="#Limits" data-toc-modified-id="Limits-15"><span class="toc-item-num">1.5 </span>Limits</a></div><div class="lev2 toc-item"><a href="#Plots" data-toc-modified-id="Plots-16"><span class="toc-item-num">1.6 </span>Plots</a></div><div class="lev3 toc-item"><a href="#Checking-some-inequalities" data-toc-modified-id="Checking-some-inequalities-161"><span class="toc-item-num">1.6.1 </span>Checking some inequalities</a></div><div class="lev2 toc-item"><a href="#Other-plots" data-toc-modified-id="Other-plots-17"><span class="toc-item-num">1.7 </span>Other plots</a></div><div class="lev2 toc-item"><a href="#Conclusion" data-toc-modified-id="Conclusion-18"><span class="toc-item-num">1.8 </span>Conclusion</a></div>
# # Python implementation of [the Exponential Integral](https://en.wikipedia.org/wiki/Exponential_integral) function
#
# This small notebook is a [Python 3](https://www.python.org/) implementation of the Exponential Integral function, $Ei(x)$, defined like this:
#
# $$ \forall x\in\mathbb{R}\setminus\{0\},\;\; \mathrm{Ei}(x) := \int_{-\infty}^x \frac{\mathrm{e}^u}{u} \; \mathrm{d}u. $$
# In[25]:
import numpy as np
import matplotlib.pyplot as plt
# In[26]:
import seaborn as sns
sns.set(context="notebook", style="darkgrid", palette="hls", font="sans-serif", font_scale=1.4)
# In[27]:
import matplotlib as mpl
mpl.rcParams['figure.figsize'] = (19.80, 10.80)
# ## Two implementations
# As one can show mathematically, there is another equivalent definition (the one used on Wikipedia):
#
# $$ \forall x\in\mathbb{R}\setminus\{0\},\;\; \mathrm{Ei}(x) := - \int_{-x}^{\infty} \frac{\mathrm{e}^{-t}}{t} \; \mathrm{d}t. $$
#
# Numerically, we will avoid the issue in $0$ by integrating up-to $-\varepsilon$ instead of $0^-$ and from $\varepsilon$ instead of $0^+$, for a some small $\varepsilon$ (*e.g.*, $\varepsilon=10^{-7}$), and from $-M$ for a large value $M\in\mathbb{R}$ (*e.g.*, $M=10000$), instead of $-\infty$.
#
# We use the [`scipy.integrate.quad`](https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.quad.html) function.
# In[28]:
from scipy.integrate import quad # need only 1 function
# First definition is the simplest:
# In[29]:
@np.vectorize
def Ei(x, minfloat=1e-7, maxfloat=10000):
"""Ei integral function."""
minfloat = min(np.abs(x), minfloat)
maxfloat = max(np.abs(x), maxfloat)
def f(t):
return np.exp(t) / t
if x > 0:
return (quad(f, -maxfloat, -minfloat)[0] + quad(f, minfloat, x)[0])
else:
return quad(f, -maxfloat, x)[0]
# The other definition is very similar:
# In[30]:
@np.vectorize
def Ei_2(x, minfloat=1e-7, maxfloat=10000):
"""Ei integral function."""
minfloat = min(np.abs(x), minfloat)
maxfloat = max(np.abs(x), maxfloat)
def f(t):
return np.exp(-t) / t
if x > 0:
return -1.0 * (quad(f, -x, -minfloat)[0] + quad(f, minfloat, maxfloat)[0])
else:
return -1.0 * quad(f, -x, maxfloat)[0]
# ## Checking the two versions
# We can quickly check that the two are equal:
# In[31]:
from numpy.linalg import norm
# In[32]:
X = np.linspace(-1, 1, 1000) # 1000 points
Y = Ei(X)
Y_2 = Ei_2(X)
# In[33]:
assert np.allclose(Y, Y_2)
print(f"Two versions of Ei(x) are indeed equal for {len(X)} values.")
# We can compare which is fastest to evaluate:
# In[34]:
get_ipython().run_line_magic('timeit', 'Y = Ei(X)')
get_ipython().run_line_magic('timeit', 'Y_2 = Ei_2(X)')
# They both take about the same time, but the second implementation seems (slightly) faster.
# ## Comparison with [`scipy.special.expi`](https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.expi.html#scipy.special.expi)
#
# The $\mathrm{Ei}$ function is also implemented as [`scipy.special.expi`](https://docs.scipy.org/doc/scipy/reference/generated/scipy.special.expi.html#scipy.special.expi):
# In[35]:
from scipy.special import expi
# In[36]:
Y_3 = expi(X)
# In[37]:
np.allclose(Y, Y_3)
# The difference is not too large:
# In[38]:
np.max(np.abs(Y - Y_3))
# In[39]:
assert np.allclose(Y, Y_3, rtol=1e-6, atol=1e-6)
print(f"Our version of Ei(x) is the same as the one in scipy.special.expi ({len(X)} values).")
# ## Special values
# We can compute some special values, like $\mathrm{Ei}(1)$ and solving (numerically) $\mathrm{Ei}(x)=0$.
# In[40]:
Ei(1)
# In[41]:
from scipy.optimize import root
# In[42]:
res = root(Ei, x0=1)
res
# In[43]:
print(f"The approximate solution to Ei(x)=0 is x0 = {res.x[0]} (for which Ei(x)={res.fun})...")
# ## Limits
# We can check that $\mathrm{Ei}(x)\to0$ for $x\to-\infty$ and $\mathrm{Ei}(x)\to+\infty$ for $x\to\infty$:
# In[44]:
for x in -np.linspace(1, 1000, 10):
print(f"For x = {x:>6.3g}, Ei(x) = {Ei(x):>10.3g} : it goes to 0 quite fast!")
# In[45]:
for x in np.linspace(1, 800, 9):
print(f"For x = {x:>6.3g}, Ei(x) = {Ei(x):>10.3g} : it goes to +oo quite fast!")
# We can check that $\mathrm{Ei}(x)\to-\infty$ for $x\to0^-$ and $x\to0^+$:
# In[46]:
for x in -1/np.logspace(1, 20, 10):
print(f"For x = {x:>10.3g} --> 0^-, Ei(x) = {Ei(x):>5.3g} : it doesn't go to -oo numerically!")
# In[47]:
for x in 1/np.logspace(1, 20, 10):
print(f"For x = {x:>8.3g} --> 0^+, Ei(x) = {Ei(x):>5.3g} : it doesn't go to -oo numerically!")
# ## Plots
# And we can plot the $Ei(x)$ function, from $-1$ to $1$.
# In[48]:
plt.plot(X, Y, 'b')
plt.title("The function $Ei(x)$ on $[-1,1]$")
plt.xlabel("$x$")
plt.ylabel("$y$")
plt.show()
# ### Checking some inequalities
# Let's check that $\forall x\in\mathbb{R}, \mathrm{Ei}(x) \leq \mathrm{e}^x$:
# In[49]:
np.alltrue(Y <= np.exp(X))
# We can check a tighter inequality, $\forall x\in\mathbb{R}, \mathrm{Ei}(x) \leq \mathrm{Ei}(-1) + (\mathrm{e}^x - \mathrm{e}) + (\mathrm{e} - \frac{1}{\mathrm{e}})$.
#
# It is indeed tighter, as the constant on the right-hand side is non-negative:
# In[59]:
Ei(-1) + (-np.exp(1)) + (np.exp(1) - np.exp(-1))
# In[60]:
upper_bound = np.exp(X) + (Ei(-1) + (-np.exp(1)) + (np.exp(1) - np.exp(-1)))
np.alltrue(Y <= upper_bound)
# In[61]:
plt.plot(X, Y, 'b')
plt.plot(X, np.exp(X), 'r--')
plt.plot(X, np.exp(X) + (Ei(-1) + (-np.exp(1)) + (np.exp(1) - np.exp(-1))), 'g--')
plt.title("The function $Ei(x)$ and upper-bound $e^x$ and $e^x + Ei(-1) - 1/e$")
plt.xlabel("$x$")
plt.ylabel("$y$")
plt.show()
# We can check a tighter inequality, $\forall t\geq1, \forall x\geq1, \mathrm{Ei}(x) \leq \mathrm{Ei}(t) + \frac{\mathrm{e}^x - \mathrm{e}^{t}}{t}$.
# In[76]:
e = np.exp(1)
upper_bound_cst = lambda t: Ei(t) - np.exp(t)/t
upper_bound_t = lambda t, X: Ei(t) + (np.exp(X) - np.exp(t))/t
upper_bound_cst(1)
upper_bound_cst(e)
upper_bound_cst(2*e)
# In[91]:
X_4 = np.linspace(1, 2*e, 1000)
Y_4 = Ei(X_4)
def check_upper_bound(t):
upper_bound_4 = upper_bound_t(t, X_4)
return np.alltrue(Y_4 <= upper_bound_4)
check_upper_bound(1)
check_upper_bound(e)
check_upper_bound(2*e)
# In[107]:
def see_upper_bound(t, xmax, onlylast=False):
X_4 = np.linspace(1, xmax, 1000)
Y_4 = Ei(X_4)
plt.plot(X_4, Y_4, 'b', label='Ei(x)')
upper_bound_4 = upper_bound_t(t, X_4)
plt.plot(X_4, upper_bound_4, 'y--', label='$Ei(t) + (e^x - e^t)/t$ for t = %.3g' % t)
if not onlylast:
plt.plot(X_4, np.exp(X_4), 'r--', label='$e^x$')
plt.plot(X_4, np.exp(X_4) + (Ei(-1) + (-np.exp(1)) + (np.exp(1) - np.exp(-1))), 'g--', label='$e^x + Ei(-1) - 1/e$')
plt.title("The function $Ei(x)$ and upper-bounds $e^x$ and $e^x + Ei(-1) - 1/e$ and $Ei(t) + (e^x - e^t)/t$ for t = %.3g" % t)
else:
plt.title("The function $Ei(x)$ and upper-bound $Ei(t) + (e^x - e^t)/t$ for t = %.3g" % t)
plt.legend()
plt.xlabel("$x$")
plt.ylabel("$y$")
plt.show()
# In[108]:
t = 1
see_upper_bound(t, 2*e)
# In[101]:
t = 2
see_upper_bound(t, 2*e)
# In[95]:
t = e
see_upper_bound(t, 2*e)
# In[109]:
t = 2*e
see_upper_bound(t, t, onlylast=True)
# In[110]:
t = 3*e
see_upper_bound(t, t, onlylast=True)
# In[111]:
t = 4*e
see_upper_bound(t, t, onlylast=True)
# In[113]:
I = lambda t: Ei(t) - Ei(-t)
I(1)
e - 1/e
assert I(1) < e - 1/e
I(e)
# ## Other plots
# In[98]:
X = np.linspace(1e-3, 2*e, 1000) # 1000 points
Y = Ei(X)
plt.plot(X, Y, 'b')
plt.title("The function $Ei(x)$ on $[0, e^2]$")
plt.xlabel("$x$")
plt.ylabel("$y$")
plt.show()
# ## Conclusion
#
# That's it, see [this page](https://en.wikipedia.org/wiki/Exponential_integral) or [this one](http://mathworld.wolfram.com/ExponentialIntegral.html) for more details on this function $\mathrm{Ei}(x)$.